

MPGD-based photon detectors for the upgrade of COMPASS RICH-1 and beyond

SHUDDHA SHANKAR DASGUPTA

INFN TRIESTE

In behalf of COMPASS RICH – 1 collaboration

Outline

- Introduction
- COMPASS RICH-1
- MPGD based Hybrid photon detectors
- Commissioning and performance of the PDs
- Results
- More we're doing after the upgrade
- Conclusion

COMPASS Experiment @ CERN

Experiments with muon beam:

COMPASS - I (2002 – 2011)

- Spin structure, Gluon polarization
- Flavor decomposition
- Transversity
- Transverse Momentum-dependent PDF
 COMPASS II (2012 2018)
- DVCS and HEMP
- Unpolarized SIDIS and TMDs

COMPASS - II (2021 – 2022)

TMDs and Proton Radius

- Experiments with hadron beams:
- Pion polarizability
- Diffractive and Central production
- Light meson spectroscopy
- Baryon spectroscopy
- Pion and Kaon polarizabilities
- Drell-Yan studies

COMPASS RICH – 1

Building COMPASS RICH – 1

Motivation for upgrading COMPASS RICH-1

• In order to cope with the challenging requests posed by the future physics program of COMPASS a set of new generation, high performing photon detectors with an active area of 576X576 mm² will be installed. The characteristics of the new detectors are:

- **1.** A small time resolution $\leq 10 \ ns$.
- 2. A closed geometry to avoid photon feedback.
- **3.** A large gain ($\ge 10^5$).
- 4. A reduced Ion Back Flow (IBF) to the CsI photocathode (\leq

MPGD based PDs:

Chosen ->

HYBRID: THGEMs + MICROMEGAS based PDs of single photons

The MPGD-based hybrid photon detector

modular structure: one module = 600x300 mm²

Standard Bulk Micromegas produced at CERN

8mm X 8mm pads at positive HV

Capacitive coupling → APV25

Component Quality Control

THGEM polishing with an "ad hoc" protocoline setup by us including baking:

Measurement of the raw material thickness before the THGEM production, accepted:

X-ray THGEM test to access gain uniformity (<7%) and spark behaviour

>90% break-down limit obtained

INSTR20, S. S. Dasgupta, INFN Trieste

27/02/2020

o access

THGEM Csl coating at CERN

Quantum Efficiency Measurement (for THGEM 421 without quartz)

Turbopump

QE uniformity

- √ 3 % r.m.s. within a photocathode
- √ 10 % r.m.s. among photocathodes
- ✓ mean value: 93% of reference

REL QE	Ju	ra	Saleve		
Тор	3	3.14	2.83	2.74	
Bot	2.47	2.44	2.47	2.98	

Rel. QE Csl for THGEM 421 [without Quartz window]

4 evaporators

Dismantling OLD PDs from RICH

Detector assembling

Assembling CsI coated THGEM in a dedicated Glove box flushing with N2 gas

Integration of new PDs on the RICH

HV control for the hybrid detectors

Electrode	Protection	Drift	THGEM1	THGEM1	THGEM2	THGEM2	mesh	MM anode
	wire plane	wire plane	top	bottom	top	bottom		
Voltage	-300 V	-3520 V	-3320 V	-2050 V	-1750 V	-500 V	grounded	+620 V
Number of								
HV channels	1	1	4	4	4	4	0	4
per detector								

Gain stability vs P, T:

- G = G(V, T/P)
- Enhanced in a multistage detector
- $\Delta T = 1 \text{ degree } \rightarrow \Delta G \approx 12 \%$
- $\Delta P = 10 \text{ mbar } \rightarrow \Delta G \approx 20 \%$

THE WAY OUT:

Compensate T/P variations by V

HV control for the hybrid detectors

12 Gaseous Photon Detectors using APV based readout (4 hybrid, 12 MWPC), 6144 Channels/detector

39 pedestal runs in 2017 COMPASS run

The niose levels are:

• MWPC: ~ 600 e⁻¹

• Hybrid: ~ 900 e⁻

The noise levels are very stable in time

Gain of hybrid detectors

A non-negligible achievement due to P, T corrections on HV application

Gain of hybrid detectors

304

Temperature fluctuation

Event displays

6.76 GeV pion

6.4 GeV pion

6.36 GeV pion

For reference:

$$\Theta$$
 (β = 1) = 52.5 mrad

- Ring center calculated from particle trajectory
- Detected photoelectrons : hits on the sensors

Angular resolution for photon detection

Number of photons

Future → RICH application → Electron-Ion Collider (EIC)

Standard Model: The most successful theory so far ... However ...

What does a proton look like in terms of quarks & gluons?

- EIC: The next QCD frontier, understanding the glue that binds us all
- Collider requirements: High luminosity & energy, variable CM energy, all- A nuclear beams, polarization in e- and light ions
- Detector requirements: Hermetic detector, low mass inner tracking, good PID (electron/pion/kaon/proton) in wide range, calorimetry, forward & backwards tracking

Motivation of this specific R & D

- Demand of a compact RICH for the future EIC ▶ short radiator length (Limited number of Photons)
- As standard quartz window is opaque below 165 nm ▶ windowless RICH is a possible approach ▶ Gaseous detectors
- CsI most used, however ageing due to humidity and ion bombardment ▶ quest for novel PC with sensitivity in the far UV region
- H-ND powder as possible alternative photocathode of CsI
- Our R&D; H-ND coupled to THGEM
- We report here some preliminary results on the initial phase of these studies

The Hybrid PD with MiniPADs

- The requirement for future EIC is to have large area Detector of single photons with small pads (3 × 3 mm²) over several m².
- Mosaic architecture with all the components and services installed within the active area has been developed.
- 100 × 100 mm² active area hybrid modules with 32 × 32 3 × 3 mm² Pads are built for lab tests.
- Each components of the hybrid modules are characterized separately in the lab and then the full module was characterized.
- The R/O is with APV 25 based Scalable Readout System (SRS).

Ongoing R&D efforts at INFN Trieste

INSTR'202

CH₄ 100%

- Development of an optimized detector for finer spatial resolution based on the hybrid THGEM + MM and "mini-pads" of size 3mm x 3mm
- Study the compatibility of these hybrid PDs with CF₄ for a windowless RICH for the future Electron Ion Collider
- Exploring the possibility to use a more robust photocathode in the far UV: hydrogenated nano-diamond crystals

Beam test @ CERN SPS T10 beam line with Pion Beam 2D hit distribution Shutter in front of radiator open Shutter in fro

Nano Diamond Photo cathodes → Poster Presented by Dr. Triloki Pandit → Poster No. 40

Diamond & Related Materials 76 (2017) 1

Pad ID X

Conclusion

- The MPGD based [THGEMs plus Micromegas] Hybrid Detectors of Single Photons have been built and implemented in real experiments.
- The detector fine tuning has been done with big care.
- Hybrids are running successfully, and Cerenkov Rings have been observed.
- The future R&D [MINIPAD version] of this novel technology has already been started for possible use in future EIC experiments.
- In recent TEST beams Cerenkov rings are observed also with the first prototype.
- A separate R&D for a quest to find a robust photocathode having significant QE at lower wavelength has been started and preliminary interesting results have been observed.

THANK YOU

Backup: Gain Sharing

Nominal gain: ~30000 with:

THGEM1 gain* transfer1: ~ 20

THGEM2 gain*transfer2 ~ 15

Micromegas gain ~100

BACKUP: IBF

The result of the direct measurement: 3% nicely matches the expectation

Trieste home-built picoammeters

The Bulk Micromegas with MiniPADs

- 4 PCBs have been produced and two of them have been equipped with a bulk Micromegas.
- For each the capacitance between the Readout pads and HV PADs have been measured.
- A variation ~ 3 5
 % have been noticed.

