

SND electromagnetic calorimeter time measurement and its applications

Natalya Melnikova BINP

on behalf of the SND collaboration

INSTR-2020, 26th February 2020

Vepp-2000 e⁺e⁻ collider

- e+e- collider at BINP (Novosibirsk, Russia);
- Hadronic cross section measurement experiments and e.t.c.;
- 2 interaction points: the CMD-3 and SND detectors;

- Energy range = 0.15 ÷ 1 GeV;
- Round beams concept;
- Circumference = 24.4 m;
- Luminosity = 1 x 10³² cm⁻² sec⁻¹ (at 1GeV);

Spherical Neutral Detector

- 1. Beam pipe
- 2. Tracking system
- 3. Cherenkov counter
- 4. Electromagnetic calorimeter crystals (Nal (TI)) (EMC)

5. Phototriods

6. Iron muon absorber7-9. Muon detector10. Focusing solenoids

The EMC spectrometric channel

- FLT and FADC clock signals are synchronized with the beam revolution frequency (F_{rf} = 12.3 MHz);
- New digitizing module (Z24)*:
 - System-on-Chip Xilinx Zynq-7000 & 6 FLASH ADCs (4 channels, 12 bit, 40 MBPS);
 - In use for data taking since ~ 09.2018;
 - Produces the digitized signal oscillogram that can be processed to **reconstruct signal arrival time and energy deposition.**
- We process oscillograms on an online-farm and store them for offline re-processing.
- * NIMA v.824 (2016), pp. 362-364

Digitized signal pulse properties

Typical signal waveform from an EMC channel.

- We expect the signal waveform to be stable for each EMC channel and use a special calibration procedure* to retrieve it;
- 64 samples;
- Sampling period = 27.12 ns;
- ◆ 1 FADC value = ~ 0.25 MeV;
- Maximum sample value = 4095 (FADC);
- Typical pedestal values:
 - P = 280 ÷ 350 (FADC);
 - σ_P = 1 ÷ 5 (FADC);

EMC channel response simulation

Signal pulse processing

- Fit the EMC digitized signal with U(t) to extract:
 - \bullet A the signal amplitude
 - P the signal pedestal
 - τ the signal arrival time with respect to F(t) – the calibrated signal shape in an EMC channel with the maximum at t_{calib}.
- Two algorithms (work in progress!):
 - Based on the linearization *;
 - Based on the correlation function.
- * JINST v.12 (2017) p. C07043

 $U(t) = A \cdot F(t - \tau) + P$ 2200 200 180 160 1400 Α 1200 1000 80 600 400 20 30 50 60 time, FADC clocks

The linearization algorithm

- Based on the algorithm for the Belle II calorimeter electronics *;
- Minimizes the function

$$\chi^{2} = (y_{i} - A \cdot F(t_{i} - \tau) - P) \cdot S_{ij}^{-1} \cdot (y_{i} - A \cdot F(t_{j} - \tau) - P)$$

- where y_i the sample signal magnitude at time t_i, F(t) function that describes the calibrated EMC channel signal shape, S_{ij} – the noise covariance matrix;
 - F(t) is linearized on a time grid to calculate all needed coefficients in advance.
- For small signals we determine only A and P with fixed τ (linear regression).

The linearization algorithm results on $e^+e^- \rightarrow e^+e^-$ events

- + Can process most of the signals with A > 50 FADC values;
- + Can be used on FPGA inside the digitizing module;
- + Relatively fast (~0.15 ms per signal);
- Can't process special cases (saturated and heavily shifted);
- The resulted time determination accuracy depends on the linearization time grid.

Total success (good signals with A > 50 FADC values)	~8%
Success for small signals (with fixed time)	~60%
Failed fit for very small signals	~30%
No fit for saturated and shifted (>7 FADC clocks) signals	~0.1%
Distorted signal shape & other problems	

The correlation function algorithm

Signals are processed in 2 steps:

Step 1 – determines the signal time shift (τ):

• Calculates the first guess for the shift (τ_0) using FFT:

$$\widehat{y_i - P}(\omega) = \exp(-i\omega\tau_0) \cdot \widehat{F}_i(\omega), \omega = \frac{2\pi}{64}$$

• Then finds the maximum of the correlation function using τ_0 as a start value:

$$\omega(\tau) = \sum_{i=0}^{i=63} (y_i - P) \cdot F(t_i - \tau)$$

Minimization with the Brent's algorithm (GSL);

Step 2 – calculates A and P of the signal using the extracted time (linear regression).

* CHEP2019 talk

The correlation function algorithm results on $e^+e^- \rightarrow e^+e^-$ events

- Can process almost all signals with the good waveform;
- + Can handle special cases: shifted and saturated signals;
- Relatively slow (~1.2 ms per signal);
- Bad time resolution for small amplitudes.

The correlation function algorithm: saturations

- Algorithm modifications:
 - For FFT τ first guess: simulates saturation on the calibrated signal waveform;
 - Determines only A (P fixed to a calibrated value) ignoring saturated samp'
- \bullet Test on MC with electronics response simulation and one fixed τ
 - Spread profile for difference between algorithm times and MC offset:

The correlation function algorithm: shifted signals

- Algorithm modifications:
 - Step 2: Determines only A (P fixed to a calibrated value).
- Test on MC with electronics response simulation and fixed τ values in range -30 ÷ +30 FADC clocks:
 - Spread profile with difference between algorithm times and MC time offset:

Signal waveform calibration (1)

- During data taking we calibrate the waveform using:
 - 1) A calibration generator:
 - Quick procedure, performed daily for monitoring:
 - For each EMC channel 100 pulses with known
 A and τ are used to construct an averaged pulse that is fitted with a cubic B-spline;
 - Resulted waveforms significantly differ from the waveforms obtained with 2 other procedures!

- 2) Cosmic muons;
- 3) $e+e-\rightarrow e+e-$ events.

* NIMA v.936 (2019) pp.117-118 CHEF2019 talk

Signal waveform calibration (2)

- Calibration on cosmic muons:
 - Performed after long stops in operation or\and maintenance work;
 - Uniform time distribution: the procedure selects "the best signal" as a reference one to obtain an initial waveform;
- Calibration on $e+e- \rightarrow e+e-$ events:
 - Performed regularly on large data set;
 - Careful selection of input hits: only good strong signals from the main time peak;
 - The previous calibrated waveform or result of the cosmic calibration is used as an initial waveform.
- Iterative procedures:

Step 2. The initial waveform is used to determine A (amplitude), τ (time shift) for all selected pulses.

* NIMA v.936 (2019) pp.117-118 CHEF2019 talk The waveform difference between Bhabha and cosmic calibration results (FADC values)

Step 3. Good fit results from Step 2 are used to construct an averaged pulse. Then it's fitted by a cubic B-spline. The obtained coefficients are stored.

EMC time event reconstruction

- Reconstruction with EMC time was implemented in the SND software framework:
 - Result of the EMC clusterization algorithm is used to form EMC time objects;
 - New entities:
 - EMC counter time;
 - EMC event time;
 - EMC particle time.

EMC time measurement applications:

Cosmic-ray background suppression (no peak on the time spectra around zero);

- Beam-induced background suppression (peaks at ±n*3*sampling period);
- Identification of events with long EMC response times like:

 $e^+e^- \rightarrow p \,\overline{p} \quad e^+e^- \rightarrow n \,\overline{n}$

First results on MC data

More efficient
 identification of the
 n n

 events near the
 threshold

Thanks to Sergey Serednyakov for figures!

First results, RUN 2019

- $e^+e^- \rightarrow n \overline{n}$ Time spectrum:
 - No signal below the threshold ($E_b = 936 \text{ MeV}$):
 - Separation from background events is possible near the threshold ($E_b = 951 \text{ MeV}$);

Summary

- The new SND EMC electronics with FADCs is successfully used for DAQ since 2018 year;
- The new digitizer with FADCs provide us with EMC signal waveforms which we
 process to extract not only energy but also time information;
- We have two different algorithms for EMC signal processing which we use together to obtain the best results;
- EMC event time reconstruction and simulation of EMC channel response was implemented;
- First attempts are being made to use EMC time measurement in physics analysis.