Neutrinoless double beta decay searches: gearing up for the tonne-scale era

Lior Arazi

Ben-Gurion University, Israel

INSTR20 conference Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk, Russia 24 - 28 February, 2020

Neutrinoless double beta decay

- SM double beta decay $\beta\beta 2\nu$: ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}X + 2e^{-} + 2\bar{\nu}_{e}$
- BSM neutrinoless double beta decay $\beta\beta 0\nu: {}^{A}_{Z}X \longrightarrow {}^{A}_{Z+2}X + 2e^{-}$
- $\beta\beta 0\nu$: violates lepton number by 2 units, neutrinos must be Majorana

Observed, $\Delta L = 0$, $T_{1/2} \sim 10^{19} - 10^{21}$ y

Unobserved, $\Delta L = 2$, $T_{1/2} > 10^{26} y$

 $\beta\beta2\nu$ vs. $\beta\beta0\nu$

 $\beta\beta0\nu$ can only occur in nuclei with $\beta\beta2\nu$, with $< 10^{-5}$ relative rate

The Majorana neutrino challenge

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(Q,Z)|M^{0\nu}|^2 m_{\beta\beta}^2$$

Lifetime $\sim 10^{27}$ - 10^{28} years. 1 signal event in a tonne of active volume per year

Lifetime ~10³⁰ years. 1 signal event in 100 tonne of active volume per year

Backgrounds

- Natural radioactivity
- $\beta\beta2\nu$ leakage into the ROI
- Cosmogenic activation
- Neutrinos

Background suppression requires excellent energy resolution + additional handles

$\beta\beta0\nu$ searches

- Germanium detectors
- Bolometers
- Loaded liquid scintillators
- Liquid xenon TPCs
- High-pressure gaseous xenon TPCs
- (Others)

All experiments give "forward-looking" MC-based predictions about their tonne-scale expected performance

Germanium detectors

Majorana, GERDA, LEGEND

Ge diodes for etaeta 0 u in 76 Ge

HPGe detectors enriched in >85% ⁷⁶Ge ($Q_{\beta\beta}$ = 2039 keV)

- Superb energy resolution (0.13% FWHM at $Q_{\beta\beta}$)
- Diode geometry optimized for PSD
- High purity and radio-purity
- High detection efficiency

Background suppression

Event topology + anti-coincidence between HPGe detectors + pulse shape discrimination + liquid argon veto

Existing and future Ge experiments

MAJORANA at SURF

29.7 kg of 88% enriched ⁷⁶Ge crystals

2.5 keV FWHM at 2039 keV

26 kg y exposure; PRL 120 (2018)

T_{1/2} > 2.7 x 10²⁵ y (90% CL)

Continues taking data

GERDA at LNGS

35.6 kg of 86% enriched ⁷⁶Ge crystals

3.0 keV FWHM at 2039 keV

58.9 kg y exposure; published in Science 2019

 $T_{1/2} > 0.9 \times 10^{26} \text{ y} (90\% \text{ CL})$

LEGEND-1t

Goal: T_{1/2} ~ 1 x 10²⁸ y (90% CL)

Location: tbd

LEGEND-200 at LNGS

200 kg of ⁷⁶Ge crystals at LNGS

Goal: 1 tonne year exposure

Goal: T_{1/2} ~ 1 x 10²⁷ y (90% CL)

Start in 2021

GERDA

Bare crystals

GERDA

LAr used for shielding, cooling + veto

GERDA

GERDA results

$T_{1/2}^{0\nu} > 0.9 \times 10^{26} \text{ y} (90\% \text{ C. L.})$

Background index = 5.6×10^{-4} counts/(keV kg y) at $Q_{\beta\beta}$ - practically background free!

Science 365 (2019) 1445

LEGEND-200

200 kg HPGe in existing (upgraded) infrastructure at LNGS

Ge detectors from Majorana and GERDA + new inverted coaxial detectors (larger mass)

Background reduction: factor 5 compared to GERDA (reduce ⁴²K, ²¹⁴Bi, ²⁰⁸Tl)

Discovery sensitivity (10 y): $T_{1/2}^{0\nu} \sim 1 \times 10^{27}$ y (34 - 90 meV) (inside the IO band)

R.J Cooper et al., NIM A 665 (2011) 25

arXiv:1709.01980

LEGEND-1t

Discovery sensitivity (10 y): $T_{1/2}^{0\nu} \sim 1 \times 10^{28}$ y (11 – 28 meV) - cover IO band

Bolometers

CUORE, CUPID, AMoRE

What is a bolometer?

- absorber + thermometer
 @ 10-20 mK
- Detects particle energy in the form of heat

Key features for metameta 0 u

- High energy resolution (few keV)
- Versatility in the choice of etaeta 0
 u materials

CUORE: $\beta\beta0\nu$ in ¹³⁰Te

988 ^{nat}TeO₂ (34% ¹³⁰Te) crystals @ 10-15 mK @ LNGS

 $\Delta E/E \sim 8.7 \text{ keV FWHM} (0.34\%)$

 $m_{\beta\beta} = 75 - 350 \ meV$

arXiv:1912.10966

2580

CUORE

- Background dominated by α particles, 1.38 × 10⁻² c/(keV·kg·yr)
- External γ background 10⁻³ c/(keV·kg·yr)

Reduction of α background: *scintillating bolometers*

Same as a bolometer + detector for scintillation

Particle ID by light/heat ratio \rightarrow rejection of α particles

HEAT SIGNAL

Reduction of γ background: *isotopes with large* $Q_{\beta\beta}$

CUPID: CUORE Upgrade with Particle IDentification

- Scintillating bolometers with ¹⁰⁰Mo, $Q_{\beta\beta} = 3034 \text{ keV}$
- Crystals: Li₂¹⁰⁰MoO₄
- Sensors (baseline): neutron-transmutation-doped (NTD) germanium thermistors, for both heat and light
- Current status: CUPID-Mo, 20 crystal demonstrator taking data (LSM, France)

 $\Delta E=5$ keV FWHM, high radiopurity

 $\alpha/\gamma(\beta)$ separation ~15 σ

arXiv:1907.09376

CUPID: proposed plan

- Install 1534 Li₂¹⁰⁰MoO₄ crystals in the CUORE cryostat (250 kg ¹⁰⁰Mo, >95% enrichment)
- Expected background index: $b \sim 10^{-4}$ counts/(keV kg yr)
- Expected sensitivity after 10 years: $T_{1/2}^{0\nu} = 1.5 \times 10^{27} \text{ y}$ ($m_{\beta\beta} = 10 - 17 \text{ meV} - \text{enough to cover the IO band}$)

Future potential:

• "CUPID-1T", $T_{1/2}^{0\nu} = 0.9 \times 10^{28}$ y after 10 years, requires a new cryostat and 20-fold improvement in background

arXiv:1907.09376

AMoRE: Advanced Mo-based Rare process Experiment

⁴⁰Ca¹⁰⁰MoO₄ (X¹⁰⁰MoO₄) + Metallic Magnetic Calorimeters (MMC)

MMC

- MMC: superconducting sensor with fast response time (~200 $\mu s)$
- Main advantage: better rejection of $\beta\beta2\nu$ pileup (considerable background in large ¹⁰⁰Mo crystals)

Six ^{48dep}Ca¹⁰⁰MoO₄ crystals, ~1 kg ¹⁰⁰Mo

Y2L, Korea EPJC 79 (2019) 791

13 $^{48dep}Ca^{100}MoO_4$ crystals + 5 $Li_2^{100}MoO_4$, ~3 kg ^{100}Mo

Favored Li₂¹⁰⁰MoO₄, ~100 kg ¹⁰⁰Mo Yemilab (new), Korea

Loaded liquid scintillators

KamLAND-Zen, SNO+

KamLAND-Zen: etaeta 0 u in ¹³⁶Xe

- KamLAND neutrino detector + inner balloon, filled with liquid scintillator loaded with Xe (91% ¹³⁶Xe) at 3 wt%, ~25 tonnes total
- 1879 PMTs (17", 20"), photocoverage 34%
- Inner balloon: 25 μm-thick nylon film
- Event location determined by photon time-of-arrival pattern (7.7 cm rms at $Q_{\beta\beta}$)
- E-res: 11% FWHM $\rightarrow \beta\beta 2\nu$ major background

KamLAND-Zen series

PAST

KamLAND-Zen 400

R = 1.54m mini-balloon Xenon 320 ~ 380 kg 2011 ~ 2015 Published (90% C.L.): $T_{1/2}^{0\nu} > 1.07 \times 10^{26}$ y

PRL 117, 082503 (2016)

- KamLAND-Zen 800
 - R = 1.90m mini-balloon Xenon 745 kg Jan. 22, 2019 ~

Expected sensitivity 5y: $T_{1/2}^{0\nu} = 5 \times 10^{26} \text{ y}$

FUTURE

KamLAND2-Zen

Xenon ~ 1 ton

Expected sensitivity 5y: $T_{1/2}^{0\nu} = 2 \times 10^{27} \text{ y}$

KamLAND-Zen series

- E-resolution: 11% FWHM
- Main backgrounds in ROI: $2\nu\beta\beta$ (47%), ²¹⁴Bi (23%), Spallation products (30%)

PRL 117, 082503 (2016)

Strongest limit to date: $T_{1/2}^{0\nu} > 1.07 \times 10^{26} \text{ y} (90\% \text{ CL})$ $m_{\beta\beta} = 61 - 165 \text{ meV}$

KamLAND-Zen 800 first results (132.7 live days)

²³⁸U and ²³²Th background reduction by factor ~10

Towards 5×10^{26} y in 5 years (28-76 meV)

TAUP 2019

KamLAND2-Zen (future)

- Add Winston cones for all PMTs (×1.8 increased light collection)
- Replace PMTs (current QE~22% → >30%)
- Replace LS (8,000 photons/MeV → 12,000 photons/MeV)
- Expected increase in energy resolution 11% → < 6% FWHM
- ~1000 kg ¹³⁶Xe
- Expected sensitivity 2 × 10²⁷ y in 5 years (14-38 meV)

ICISE Vietnam 2019

SNO+: $\beta\beta0\nu$ in ¹³⁰Te

- Successor of the SNO experiment at SNOLAB, Canada
- Primary goal: $\beta\beta0\nu$ in ¹³⁰Te ($Q_{\beta\beta} = 2527$ keV)
- Secondary goals: measurements of solar, reactor and geo neutrinos + nucleon decay

Electronics and DAQ

~780 t of LABPPO scintillator + ~4 t of natural tellurium (34% ¹³⁰Te)

Acrylic vessel 6 m radius, 10 cm thick

Expected energy resolution with 0.5% Te: 7.5% FWHM (188 keV)

ROI: 2.49 - 2.65 MeV [-0.5σ - 1.5σ]

Expected energy distribution with nominal backgrounds

arXiv:1809.05986
90% confidence limit after 5 years with 0.5% tellurium (6.8 tonne-year exposure): $T_{1/2}^{0\nu} > 2.1 \times 10^{26}$ y ($m_{\beta\beta} = 50.6$ meV)

SNO+ future sensitivity

Phase II (4% Te + increased light yield):

Liquid xenon TPCs

nEXO (EXO-200), DARWIN

nEXO: LXe TPC for etaeta 0 u in ¹³⁶Xe

- Builds on experience gained in EXO-200 (110 kg LXe active mass, $T_{1/2}^{0\nu}$ $> 1.8 \times 10^{25}$ y)
- Single-phase LXe TPC: 1.16 m inner diameter, 1.25 m drift height (single drift direction)
- 5.1 t LXe (90% ¹³⁶Xe) in total (4.0 in the TPC)
- Charge readout by induced current on charge collection tiles (top)
- Light readout by SiPM tiles (4.5 m² total) on barrel behind the field cage

EXO-200 mounted in cryostat

nEXO – background suppression

- 2.5 MeV γ attenuation length 8.5 cm take $\beta\beta0\nu$ data away from wall
- Double-beta events are mostly single-site, while γ s Compton-scatter \rightarrow resolve multi-site events in space and time
- Optimize energy resolution (EXO-200 achieved 2.7% FWHM, expect 2.5% FWHM in nEXO)
- Cosmogenic production of ¹³⁷Xe by muon-induced neutron capture in ¹³⁶Xe (¹³⁷Xe beta decays with Q=4173 keV) → deep underground lab + active veto
- ^{214}Bi decays inside LXe active volume (from ^{222}Rn) tagged by subsequent $^{214}\text{Po}~\alpha$ decay
- Use entire active volume to establish background model
- Background index < 10⁻³ counts/(kev kg y)
- Parallel R&D on barium tagging currently not the baseline option

nEXO – expected sensitivity

DARWIN

- Two-phase TPC: 2.6 m diameter,
 2.6 m height
- 50 t LXe in total (40 in the TPC)
- Primary goal: WIMP search down to the "neutrino floor"
- Secondary goal: $\beta\beta 0\nu$ in ¹³⁶Xe
- If natural Xe: 3.5 ton ¹³⁶Xe in the TPC!
- XENON1T E-res 1.9% FWHM → same expected in DARWIN

DARWIN collaboration, JCAP 1611 (2016) 017

DARWIN: expected background and sensitivity

Sensitivity sweep through different fiducial masses

Discovery sensitivity (10 y): $T_{1/2}^{0\nu} \sim 2.3 \times 10^{27}$ y (13 – 36 meV) - cover IO band (Significant improvement possible in deeper site than LNGS and enhanced radiopurity)

TAUP 2019

High-pressure gaseous xenon TPCs

NEXT, PandaX-III, AXEL

NEXT: High-pressure Xe gas TPC - etaeta 0 u in ¹³⁶Xe

Working in high-pressure (10-15 bar) gas rather than liquid allows:

Excellent energy resolution by proportional electroluminescence (demonstrated 1% FWHM at Q_{BB} , aim at 0.5%)

Reconstruction of track topology to discriminate between background and signal

80

1.1% FWHM

at 1.6 MeV

NEXT: Mode of operation

S1 (PMTs) gives t_0

S2 magnitude by proportional EL (PMTs) gives the event energy

S2 time-slice images (SiPMs) give the event topology

NEXT-White (now)

TPC inner diameter 45 cm, drift length 53 cm, 5 kg fiducial mass at 15 bar

NEXT-White: $\beta\beta2\nu$ events in data

NEXT-White: $\beta\beta2\nu$ events in data

NEXT-100 (assembly in 2020)

Main goal: technology demonstrator on the 100 kg scale

Expected background index 4×10^{-4} counts/(keV kg y)

NEXT-HD (future)

- 1000 kg enriched Xe
- Bi-directional symmetric TPC
- Tracking + energy by radiopure SiPMs
- Operated at low temperature (to reduce SiPM dark count rate)
- Low-diffusion gas mixture (e.g., Xe/He 85/15) to further improve topology
- Expected sensitivity after 10 years: $T_{1/2}^{0\nu} \sim 3 \times 10^{27} \text{ y} (\sim 10 - 30 \text{ meV})$

arXiv:1906.01743

The aggressive approach: NEXT-BOLD

Tagging the barium daughter in a $\beta\beta0\nu$ candidate event can lead to a background-free experiment

Single Molecule Fluorescent Imaging comes back to physics!

Noble price in Chemistry 2014: Development of superresolved fluorescence microscopy

A bright idea by D. Nygren

J.Phys.Conf.Ser. 650 (2015) no.1, 012002

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

A.D. McDonald *et al.* (NEXT Collaboration) Phys. Rev. Lett. **120**, 132504

SMFI barium tagging in NEXT

- Coat cathode plane with chelating molecules that selectively catch barium ions (not Xe).
- The molecules are non fluorescent in isolation and become fluorescent upon chelation (or alternatively change fluorescence color when containing barium).
- Following a trigger on the event energy, scan cathode with a laser. A single molecule holding Ba appears as a bright spot.

SMFI barium tagging in NEXT

- Development at UTA based on monocolor molecules: on/off
- Enhanced fluorescence when "on"

- Development at DIPC based on bicolor molecules (FBI)
- Enhanced fluorescence and spectral separation

Additional projects (details in backup slides)

- PandaX-III: High-pressure Xe gas TPC $\beta\beta0\nu$ in ¹³⁶Xe
 - Multi-module approach (each ~100 kg) in CJPL China
 - Xe-TMA favor topology over energy resolution
 - Readout by mosaic of bulk MicroMegas
 - First 100 kg module to be commissioned in 2020
- AXEL High-pressure Xe gas TPC etaeta 0
 u in ¹³⁶Xe
 - EL in perforated PTFE structure, with SiPM readout for individual holes
 - Now operating a 4.5 kg Xe prototype with 168 channels
 - To be followed by a 40 kg module

Additional projects (details in backup slides)

- SuperNEMO $\beta\beta0\nu$ in multi isotopes
 - Successor of NEMO-3
 - Isotope contained in a thin foil, with the outgoing $\beta\beta$ electrons passing through a gas tracker and a calorimeter
 - Ideal for characterizing the etaeta 0
 u mechanism once a discovery is made by other experiments

COBRA

- Array of CdZnTe crystals, containing five $\beta^-\beta^-$ and four $\beta^+\beta^+$ isotopes, including ¹¹⁶Cd and ¹³⁰Tl
- Crystals serve as both source and detector
- Background suppression by multi-crystal hits and PSD
- Room temperature operation with ~35 keV FHWM
- Two demonstrators with different crystal sizes taking data at LNGS (total masses 300 and 400 g).

PRC 94, 024603 (2016), NIM A 807 (2016) 114

Summary

- The importance of $\beta\beta0\nu$ detection justifies a multi-isotope approach
- Several major players, but funding for the tonne-scale is still uncertain
- Tonne-scale experiments will require many tens of M€, clearly not all will make it
- GERDA and Majorana demonstrated a successful merger. Can this model apply to others?
- Normal-ordering appears favored by oscillation experiments, but other effects beyond light Majorana neutrinos exchange may contribute to $m_{\beta\beta}$
- g_A quenching lurks in the dark, but advanced nuclear matrix element calculations may save the day

Backup slides

PandaX-III: High-pressure Xe gas TPC - $etaeta 0 \nu$ in ¹³⁶Xe

- TPC: 100 kg scale high pressure TPC with charge readout
- Main design features: good energy resolution and tracking capability
- Traditional cuts and neural network topological studies (arXiv:1903.03979 ;1802.03489)

PandaX-III: readout plane

- Microbulk MicroMegas films made of Copper and Kapton only
 - Perfect for radio-purity purpose
 - 20 by 20 cm
 - 3 mm pitch size, 128 strip readouts
- Mosaic layout to cover readout planes

PandaX-III: status and sensitivity

- A 20-kg scale prototype TPC is running (arXiv:1804.02863)
- 1st 100-kg scale module to commission in 2020
- Half-life sensitivity with 3 years of data: 9×10²⁵ yr (90% CL)

AXEL: High-pressure Xe gas TPC - etaeta 0 u in 136 Xe

AXEL: A Xenon ElectroLuminescence detector to search for neutrinoless double-beta decay

AXEL road map

1 ton scale 1000L(40 kg) scale 202?physics data taking

10-L prototype 2014–2018

- ~0.05kg @8bar
- ELCC proof of principle

180-L prototype 2018–2020 • ~4.5kg @8bar phase-1 : 168 ch phase-2 : 672ch phase-3 : 1,512 ch

AXEL: 180L phase 1

AXEL: 180L phase 1 performance

SuperNEMO: overview

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first (Demonstrator Module) phase.
- 3. Prove that a 100 kg scale experiment can reach the inverted mass hierarchy (~50 meV) domain.
- 4. In the event of a discovery by any of the next-generation experiments, demonstrate that the tracking-calorimeter approach is by far the best one for characterising the mechanism of $0\nu\beta\beta$ decay.

SuperNEMO: the tracker-calorimeter technique

- Source separated from detector: (almost) any solid isotope can be hosted.
- Full topological event reconstruction including e[±], γ-ray and α-particle identification → strong background control & mechanism probe.
- Successfully exploited by NEMO-3 experiment: 0vββ limits and 2vββ T_{1/2} for several isotopes.

SuperNEMO: demonstrator

- Experience from the Demonstrator Module suggests a 100 kg, 10²⁶ yr class experiment ("full SuperNEMO") would be possible.
- Full event reconstruction of 2vββ gives unique precision measurements and access to nuclear physics : g_A analysis in preparation.
- Can the technique be extended to confirm a signal anywhere in the IH region ? R&D and isotope developments can point the way.
SuperNEMO: future directions

Largest source of uncertainty: the size of axial coupling g_A

 $g_A = 1.269$ for weak interaction and decays of nucleons Quenching effects inside the nucleus *may* considerably reduce g_A <u>Conservatively</u> one should consider several options:

$$g_A = \begin{cases} g_{nucleon} &= 1.269 \\ g_{quark} &= 1 \\ g_{phen.} &= g_{nucleon} \cdot A^{-0.18} \end{cases}$$

The degree of g_A quenching is unknown. The expression for g_{phen} is based on $2\nu\beta\beta$ half-lives and may be different for $0\nu\beta\beta$

Effect of uncertainty in g_A

For ¹³⁶Xe taking $g_A = g_{phen}$ pushes up the limit on $m_{\beta\beta}$ by a factor of $\gtrsim 5$