

The Phase-2 Upgrade of the Hardware Trigger of CMS at the LHC (for HL-LHC = "High-Luminosity LHC")

Manfred Jeitler

Institute of High Energy Physics, Vienna

HL-LHC program

- precision measurements of standard model parameters
 - including Higgs particle
- BSM searches
 - "beyond-the-standard-model" physics, "new" physics
- both need much higher luminosity than now
 - "pileup" of 200
 - » simultaneous interactions in a single bunch crossing
 - $-7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - 3000 fb⁻¹ over the full experimental run (until 2035)
- if keeping current system: much higher p_T threshold
 - higher threshold in "transverse momentum" → lose sensitivity
- also: new signatures
 - displaced vertices, long-lived particles (timing!)
 - (no new physics has been found with conventional signatures)

Pileup effect

effect of higher pileup on trigger rates is in some cases much stronger than linear!

for total energy sum, missing transverse momentum, multi-object triggers

Rate reduction

currently:

- L1: $40 \text{ MHz} \rightarrow 100 \text{ kHz}$
 - "Level-1 trigger"
 - hardware trigger
- \blacksquare HLT: 100 kHz \rightarrow 1 kHz
 - "High-Level Trigger"
 - computer farm

Trigger stream vs full data

Slide from Alexei N. Safonov

LHC / HL-LHC Plan

LHC / HL-LHC Plan

LHC / HL-LHC Plan

Upgrade strategy

- tracker trigger
 - use particle flow approach at Level-1
 - so far, silicon tracker was not in Level-1 trigger
 - new detector needed to make this possible
- trigger rates increase:
 - L1: $100 \rightarrow 750 \text{ kHz}$
 - HLT: $1 \rightarrow 7.5 \text{ kHz}$
- latency increase
 - $-3.8 \rightarrow 12.5 \,\mu sec$
- better trigger granularity
 - high-granularity endcap calorimeter ("HGCAL")
 - » new detector
 - ECAL towers → single crystals

Architecture

11

Tracker Trigger (1)

- cannot send all hits to trigger at 40 MHz
- → local "intelligence" needed to reduce rate
 - only tracks with $p_T > 2$ GeV are sent to tracker trigger

Tracker Trigger (2)

most tracks have low p_T

- need not be sent to L1 trigger
- at a pileup of 200, an average of 200 tracks
 will be forwarded to trigger correlator

Tracker Trigger (3)

- Track-finding algorithm
 - stubs as input
 - hybrid algorithm: tracklet seed and road search algorithm (Kalman filter)
- "Particle Flow" approach now possible at Level-1 trigger
 - use information from all detectors

- advanced pileup mitigation techniques
 - "PUPPI" = "PileUp Per Particle Identification"

Tracker Trigger (4)

Example: semileptonic top – anti-top events $(t\bar{t})$

- also called "missing transverse energy"
- calorimeter only / raw tracker information / particle flow and pileup-suppression (PUPPI)

 H_T : vectorial energy sum of jets

- turn-on curve for a fixed Level-1 rate of 20 kHz

Tracker Trigger (4)

Example: semileptonic top – anti-top events $(t\bar{t})$

- also called "missing transverse energy"
- calorimeter only / raw tracker information / particle flow and pileup-suppression (PUPPI)

 H_T : vectorial energy sum of jets

- turn-on curve for a fixed Level-1 rate of 20 kHz

High Granularity Calorimeter (HGCAL)

- completely new subdetector
 - higher radiation in forward region
- sampling calorimeter with silicon (radiation hard) and scintillator
- 14 layers used at L1 in the EM section,24 in HCAL section
- 3D high granularity allows Particle-Flow reconstruction
- longitudinal segmentation helps to disentangle pileup events
 - longitudinal layer-by-layer readout
- trigger primitives: 3D clusters
 - too much information for L1 trigger
 - compromise between number of clusters and amount of information per cluster

Electromagnetic calorimeter (ECAL) in the barrel

- so far, only information from "trigger towers" (5 x 5 crystals) has been available at L1-trigger
- upgrade electronics to use single-crystal information
 - 16 bits x 61200 crystals ~ 39 Tb
- → better efficiency at half the rate

- additional muon detectors in forward region
- improved algorithms
 - allowing for vertices that are displaced from beam

Displaced vertices / "long-lived particles (LLP)" (1)

- some physics scenarios predict relatively long-lived new particles
 - could appear as decay vertices displaced from beam axis
- so far CMS had no efficient Level-1 trigger for such events

- high-momentum (straight) displaced track would correspond to lower momentum (bent) track when forced (by Level-1 trigger algorithm) to come from beam axis
- relaxing this requirement can result in high background rates
- new techniques needed
 - for example, muon reconstruction by Kalman filter without beam-axis requirement
 - "unconstrained" vertex fit
 - will be introduced already in Run 3
 - also use timing information

Displaced vertices /

"long-lived particles (LLP)" (2)

Muon timing for long-lived particles

Anomaly Trigger

23

- we do not know what "New Physics" looks like
 - it should be different from standard-model physics
- → "anomaly detection" by machine learning
- idea:
 - reduce data volume("encode") in "Latent space"
 - try to reconstruct original data ("decode")
 - look for differences
 - can "train" with (abundant)measured data

Graphs from Zhenbin Wu

And if we did not trigger? WHE "Scouting"!

- for certain analyses, need lots of statistics but can make do with reduced data
- → record only trigger-level information (without full detector data)
 - has already been done in CMS ("scouting") and also in ATLAS ("trigger-level analysis")
- or even more statistics and less data volume: "40-MHz scouting"
 - record part of the input information to the Level-1 trigger, for each bunch crossing

To make optimum use of the HL-LHC, we need more powerful, novel

- detectors
- trigger electronics
- trigger algorithms

PLECTROMAGNETIC

CALORIMETER (ECAL)

-76,000 ncintillating PbWO, crystal

HADRON CALORIMETER (HCAL) Bross & Plantic scientifister ~ 7,000 chargeds

BACKUP

The current Level-1 Trigger

28

Things not covered

- HCAL depth, timing
- lumi levelling

Introduction

- Full-detector tracking @ 40 MHz for HL-LHC, utilizing unique "p⊤ modules"
- Baseline to identify prompt tracks with p_T > 2 GeV, |η| < 2.4
 - Extended: add capability to reconstruct <u>displaced</u> tracks
- Tracks propagated to L1 trigger for correlation with calo/muon inputs

http://cms-tklayout.web.cern.ch/cms-tklayout/layouts/recent-layouts/OT616_IT613/index.html

2

from: Louise Skinnari

31

L1 tracking <u>hybrid</u> algorithm

- Form tracklet seeds from adjacent layers/disks + beam spot constraint
 - Extended (displaced) tracking: "triplet" seeds w/o beam spot constraint
- Project & find matching stubs in other layers/disks
- Track candidates sharing stubs are merged prior to fitting
- Track fitting using Kalman Filter to identify best stub candidates & provide final set of track parameters
 - ▶ Default uses 4 parameter fit, displaced 5 parameter fit to include d₀

Tracklet seed & search

from: Louise Skinnari

L1 tracking architecture

- System architecture with extensive parallel processing
- Detector sub-divided into 9 φ sectors with time multiplexing (TMUX) of 18

from: Louise Skinnari