

FAIR Status

and the PANDA Experiment

Anastasios Belias, GSI

FAIR: Facility for Antiproton and Ion Research

FAIR – The Facility

• Intensity gain: x 100 − 1000

10 x energy (comp. to GSI)

Antimatter: antiproton beams

FAIR: International Cooperation

- 9 international FAIR Shareholders
- 1 Associated Partner (United Kingdom)
- 1 Aspirant Partner Czech Republic (Since 2018)
- Participation of 3.000 scientists from all continents

Status of FAIR Project: Civil Construction

Progress since ground breaking event 4-July-2017

Status of FAIR: Accelerators: construction / procurement progress

~ 60 sc dipole SIS100 modules manufactured at BNG and 55 shipped to GSI and tested

SIS100 quadrupole units shipped from JINR to BNG for integration into FOS module

All 51 HEBT vacuum chambers of batch 1 delivered (BINP, Russia)

FAIR ESSI

The series production of RF – debunchers

All HESR Dipoles are produced, in Jülich and 65% are delivered to FAIR

Delivery of 1st 6 series Power Converter from India, (ECIL, India)

Status of FAIR: Accelerators: construction / procurement progress

Two FoS vacuum chambers for the quadrupole doublet modules of the SIS100 arrived from China. They will be installed by the integrator in the quadrupole units

First-of-Series of the Super-FRS short SC
Multiplet arrived in February 2019 at CERN
test facility for execution of the Site
Acceptance Test

First HESR Stochatic cooling pick-up and kicker in operation at COSY

FAIR ESSI

Successfully First-of-Series FAT for the Super-FRS short SC Multiplet took place in Italy at January 2019

Copper plating and first tests of the RFQ accelerator cavity for the pLinac have been completed and match specifications

Three new MA acceleration cavities installed and commissioned with beam

Distributed testing infrastructure for the FAIR superconducting magnets

GSI: Series test facility for the SIS100 s.c. dipole magnets, string test, current leads and local cryogenics components.

CERN: Test facility completed for the Super-FRS s.c. dipoles and multipletts

INFN: Test facility in Salerno for testing the series of SIS100 quadrupole modules

JINR, Series test facility in Dubna for testing of the series of SIS100 s.c. quadrupole units

New CRYRING@GSI/FAIR

- FIRST FAIR accelerator
- ready for experiments and tests

The FAIR science: four pillars

atomic physics, biophysics, plasma physics, material research, other applications

nuclear- and quark-matter

nuclear structure and nuclear astrophysics

hadron structure and dynamics

APPA -

Atomic Physics, Plasma Physics, and Applied Sciences

strong field research

... probing of fundamental laws of physics

warm dense matter

... states of matter common in astrophysical objects

radiation hardness

... mechanical and electrical degradation of materials

space travel

... cosmic radiation risk and shielding

APPA

- Atomic, Plasma Physics and Applications
 - About 800 members
 - Wide field of science
 - basic research into material, biological and medical applications and space research

SPARC: ~400 members from 26 countries

plasma

HED: ~300 members from 16 countries

Materials Research and Biophysics

BIOMAT: ~100 members from 12 countries

CBM - Compressed Baryonic Matter

CBM Experiment at FAIR: Systematically explore QCD matter at large baryon densities with high accuracy and rare probes, at highest interaction rates in the field.

CBM collaboration: 55 institutions, 470 members in 11 countries

- QCD Equation of State
- Search for exotic phases and 1st order phase transition
- Critical endpoint
- Chiral symmetry restoration at high μ_R

CBM Experiment – Construction Phase

STS

→Poster: P. Pfistner

typical collision system: Au⁷⁹⁺ +Au at 4 to 11 AGeV

Day 1: beam intensity: 5x10⁷ ions/sec; interaction rate 0.5 MHz

MSV: beam intensity: 10⁹ ions/sec; interaction rate 10 MHz

NUclear STructure Astrophysics and Reactions

SIS100

NUSTAR

- The limits of nuclear existence (lifetimes, decays, ...)
- Ground state properties (masses, radii, ...)
- Structure of excited states (shell structure, shapes, ...)
- Unbound and other exotic system (halo, skin, ...)
- Nuclear equation of state

NUSTAR

- Origin of Elements in the Universe

"Nucleosynthesis sites" in the universe

"Nucleosynthesis sites" at FAIR

Primary intensities vs. GSI: x 100

> SIS 100

production target

Status of NuSTAR experiments

- detector R&D and construction

PANDA

PANDA - AntiProton Annihilation at Darmstadt

Bound States of Strong Interaction

Spectroscopy

- New narrow XYZ: Search for partner states
- Production of exotic
 QCD states:
 Glueballs & hybrids

Strangeness

- Hyperon spectroscopy: excited states largely unknown
- Hyperon polarisation: accessible by weak, parity violating decay

Nucleon Structure

- Generalized parton distributions:
 Orbital angular momentum
- Drell Yan: Transverse structure, valence anti-quarks
- Time-like form factors: Low and high E, e and μ pairs

Nuclear Hadron Physics

- Hypernuclear physics:
 - Double ∧ hypernuclei
 - Hyperon interaction
- Hadrons in nuclei: Charm and strangeness in the medium

NuPECC Long Range Plan

The combination of PANDA's discovery potential for new states, coupled with the ability to perform high-precision systematic measurements is not realised at any other facility or experiment in the world.

Antiprotons at FAIR

Antiproton production

- Proton Linac (70 MeV)
- Accelerate p in SIS18/100 (4/29 GeV)
- Produce p
 on Ni/Cu target (3 GeV)
- Collection in CR, fast cooling
- Accumulation in HESR
- PANDA luminosity $\leq 2 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$
- p̄ momentum: 1.5 15 GeV/c
- Fixed target: cluster jet/pellet
- Full FAIR version (Phase 3, after 2026)
- Accumulation in RESR, slow cooling
- Storage in HESR
- PANDA luminosity $\leq 2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

HESR - High Energy Storage Ring

Mode	High luminosity (HL)	High resolution (HR)
Δp/p	~10-4	~4x10 ⁻⁵
L (cm ⁻² s ⁻¹)	2x10 ³²	2x10 ³¹
Stored p̄	1011	10 ¹⁰

Circumference	575 m
Momentum	1.5 – 15 GeV/c

HESR - High Energy Storage Ring

PANDA Detector Requirements

- 1.5 15 GeV/c antiprotons on fixed target
 → asymmetric layout
- 4π acceptance
- High rate capability: up to
 20MHz average interaction rate
- > Efficient event selection for data reduction
- Continuous data acquisition
- Momentum resolution: ~1%
- Precision vertex information for D, K⁰_s, Y
- γ detection for 1 MeV 10 GeV
 - → crystal calorimeter
- Good Particle ID (e, μ, π, K, p)
 - → dE/dx, ToF, RICH/DIRC, muon chambers

PANDA Detector

24

PANDA – DIRC Detectors

Detection of Internally Reflected Cherenkov light pioneered <u>by BaBar</u>

- Cherenkov detector with SiO₂ radiator
- Detected patterns give β of particles

→ Talk: C. Schwarz → Poster: A. Ali

Barrel DIRC

- Design similar to <u>BaBar</u> DIRC
- Polar angle coverage:
 22° < θ < 140°
- PID goal: 3σ π/K separation up to 3.5 GeV/c

Key technologies:

- fast single photon timing in high B-fields with small pixels and long lifetime
- high-quality fused silica radiators

Endcap Disc DIRC

- Novel type of DIRC
- Polar angle coverage:
 5° < θ < 22°
- PID goal: 3σ π/K separation up to 4 GeV/c

PANDA - Target Electromagnetic Calorimeter

Crystal Calorimeter based on ~15,500 high quality second-generation PWO II (PbWO₄) crystals

- Small radiation length $X_0 = 0.89$ cm (20cm $\approx 22 X_0$)
- Short decay time τ=6.5 ns
- Increased light yield, at -25°C
- Time resolution <2ns
- Coverage: 99.8% of 4π
- TDR approved

Challenges

- temperature stable to 0.1 °C
- control radiation damage

Large Area APDs

Barrel Calorimeter 11000 crystals PWO II LAAPD readout, 2x1cm² σ(E)/E~1.5%/VE + const.

Forward Endcap

4000 crystals PWO II
High occupancy in center

Backward Endcap for hermeticity, 530 crystals PWO II

Crystal Production

~60% produced at BTCP (Russia) New producer Crytur (Czech Rep.)

APD / Preamp / VPTT

Screening 30000 APDs ASIC preamp design ready VPTT Modules ready

Assembly

Forward-EMC: near completion

Backward-EMC: production started

PANDA

Muon Detector system

TDR and Prototypes - JINR Dubna

Muon system rationale

Low momenta, high BG of pions

→ Multi-layer range system

Drift tubes with wire & cathode strip readout

FEE FPGA development Production designs @ JINR

Forward Shashlyk Calorimeter

TDR and Prototypes - IHEP Protvino → Talk: M. Preston

FADCs for digitization

PANDA – Data Acquisition and Controls

Experimental
Physics and
Industrial
Control
System

Supervisory Layer

Controls GUI interface
Databases & configurations
Interface: HESR, DAQ

Control Layer

I/O controllers Device Drivers Archiving sub-system

Field Layer

PANDA sub-systems specific Interface: Detector Safety System

Detector Frontends

TDC developments @GSI → Talk: M. Traxler

FPGA h/w

Machine Learning Schemes

Storage

DAQ Timing

Self triggered readout

- Components:
 - Time distribution: SODA
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network

Online . Event Filter

Data Flow:

- Data reduction
- Local feature extraction
- Data burst building
- Event selection
- Data logging after online reconstruction

→ Programmable Physics Machine

Online selection schemes and physics algorithms are a key for successful measurements

PANDA Collaboration

Collaboration

Technical Design Reports

UP Marche Ancona
U Basel
IHEP Beijing
U Bochum
Abant Izzet Baysal
U Golkoy, Bolu
U Bonn

U Brescia IFIN-HH Bucharest AGH UST Cracow IFJ PAN Cracow

JU Cracow Cracow UT

FAIR Darmstadt GSI Darmstadt

JINR Dubna U Erlangen NWU Evanston
U Frankfurt
LNF-INFN Frascati
U & INFN Genova
U Gießen
Giresun U
U Glasgow
KVI-CART Groningen
Gauhati U, Guwahati
USTC Hefei
URZ Heidelberg
Doğuş U, Istanbul
Okan U, Istanbul

FZ Jülich

IMP Lanzhou

INFN Legnaro

Lund U
HI Mainz
U Mainz
RINP Minsk
ITEP Moscow
MPEI Moscow
U Münster
BINP Novosibirsk
Novosibirsk State U
U Wisconsin, Oshkosh
U & INFN Pavia
PNPI St. Petersburg
West Boh. U, Pilzen
Charles U, Prague
Czech TU, Prague

IHEP Protvino
Irfu Saclay
KTH Stockholm
Stockholm U
SUT, Nakhon Ratchasima
SVNIT Surat-Gujarat
S Gujarat U, Surat-Gujarat
FSU Tallahassee
Nankai U, Tianjin
U & INFN Torino
Politecnico di Torino
U Uppsala
SMI Vienna
NCBJ Warsaw
U York

https://fair-center.de/index.php?id=329&L=0

more than 420 physicists from from more than 65 institutions in 18 countries

PANDA Planning

Schedule for FAIR Science

- Working towards the completion of FAIR by 2025/26
- Major thrust is on construction of FAIR accelerators and experiments.
- At the same time staged approach to FAIR science and progressive commissioning of accelerators and detectors:

FAIR phase 0 : start in 2018/2019

- FAIR day 1 configurations/ phase 1 experiments with FAIR accelerators progressively approaching design parameters → 2024/25 ...
- Full FAIR operation 2025/26+

Phase-0 at GSI: HADES (CBM, PANDA)

- First HADES beam data obtained in February 2019 during commissioning of the beam on target
- HADES production beam time 28 days in March 2019
 Unique studies of baryon-rich matter through 14 billion recorded events of Ag+Ag
- HADES forward detection system to be complemented this year utilising technology developed for and in close cooperation with PANDA

FAIR is coming

FAIR is a unique opportunity for world science.

A fascinating and broad science program, with world class experiments

The Project is rapidly developing

- Both civil construction and procurement of accelerator components proceed rapidly, aiming at the start of FAIR by 2025
- The experiments are getting ready
- First-class intermediate research program, FAIR Phase-0 has started.

FAIR 2025

