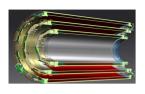
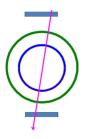
Preliminary results from the cosmic data taking of the BESIII Cylindrical GEM detectors

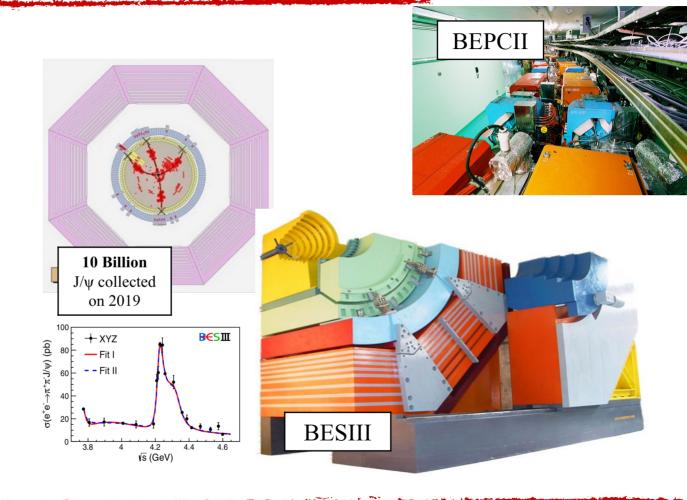

Riccardo Farinelli on behalf of the CGEM-IT working group



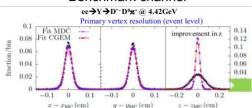
Outline

Cylindrical GEM: detector and electronics

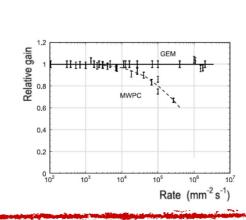
Cosmic ray setup


Reconstruction and analysis

Preliminary **results** of the CGEM-IT

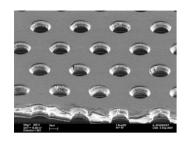

BESIII experiment

- Beijing Electron-Positron Collider BEPCII
 and BEijing Spectrometer BESIII operate in
 the τ-charm region
- Luminosity = 10^{33} cm⁻² s^{.1}
- Energy_{cm}: 2 4.6 (4.9) GeV
- The main physic programs include:
 - Light hadron physics with meson and baryon spectroscopy
 - 2. QDC exotics and XYZ charmed states
 - 3. Studies in τ -charm region and R values
 - Charm physics, CPV, D mixing, charmed baryon


Cylindrical GEM Inner Tracker

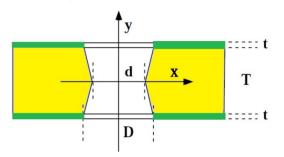
Benchmark channel

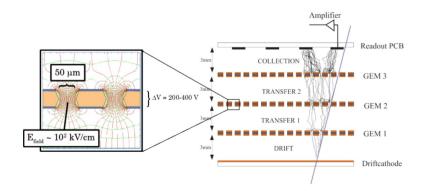
- A cylindrical GEM IT will replace the BESIII inner

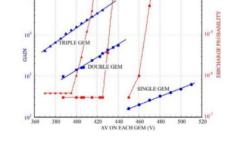

 MDC since aging is affecting its performance
- A double view readout for **3D** reconstruction with time and charge measureemnts
- GEM technology improves the rate capability and the radiation hardness

BESIII requirements

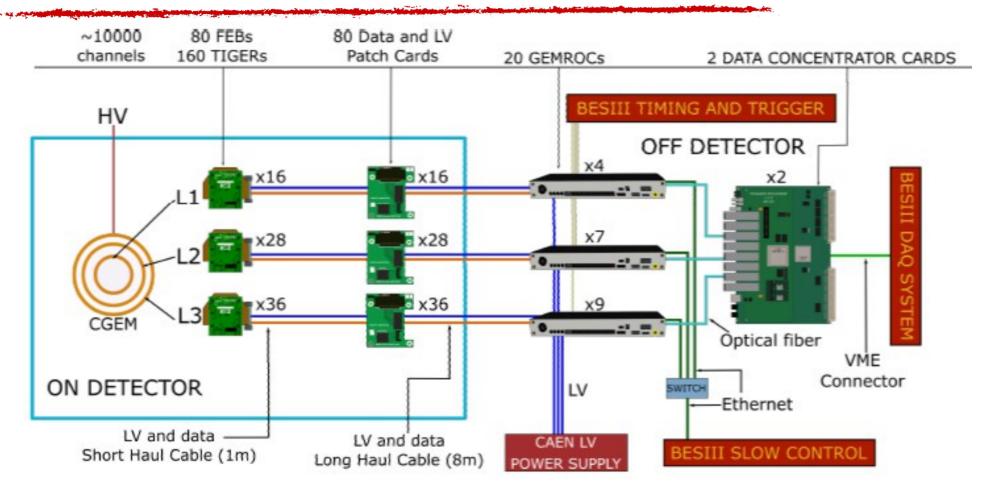
- Rate capability:~10⁴
 Hz/cm²
- Spatial resolution:
 - $\sigma_{r\phi} = \sim 130 \,\mu\text{m} : \sigma_z = \sim 1 \,\text{mm}$
- Momentum resolution: $\sigma_{nl}/P_{t} = \sim 0.5\% @1 GeV$
- Efficiency = $\sim 98\%$
- Material budget $≤ 1.5\% X_0$ in all layers
- Coverage: 93% 4π
- · 1 Tesla magnetic field


Gas Electron Multiplier in a nutshell


Polymeric kapton foil ($T = 50 \mu m$)

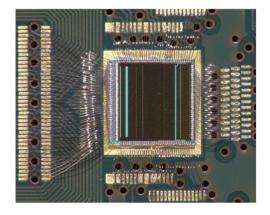

Copper coated ($t = 3/5 \mu m$)

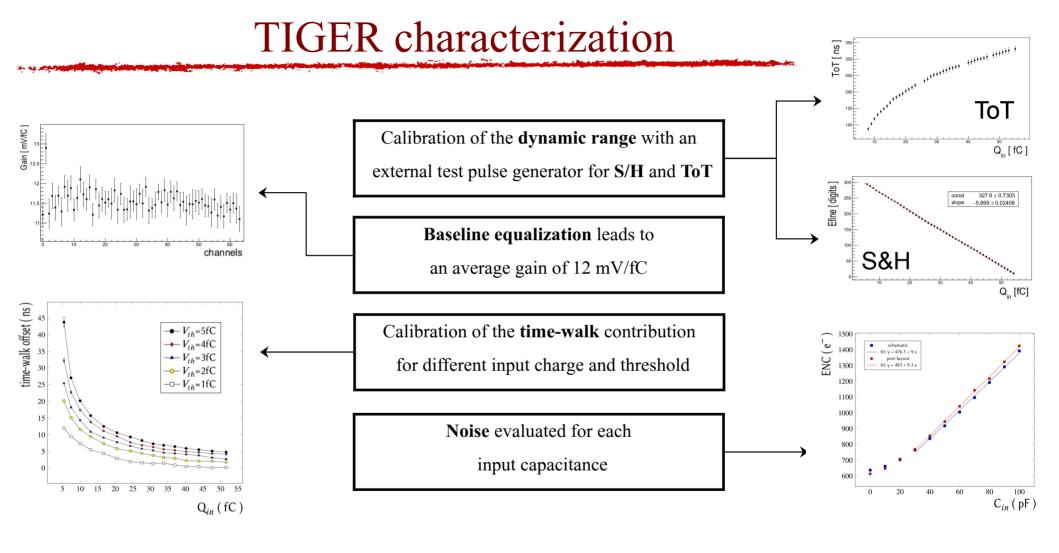
Pierced by etching technique ($d = 50 \mu m$)


- GEM technology was invented by **F. Sauli** in 1997
- Hundreds of Volts applied on the two copper faces generate an electric field
- An electron entering the hole creates an electron avalanche

• Three amplification stages allow the triple-GEM to reach a gain of 10³ - 10⁴ while the discharge probability is below 10⁻⁵

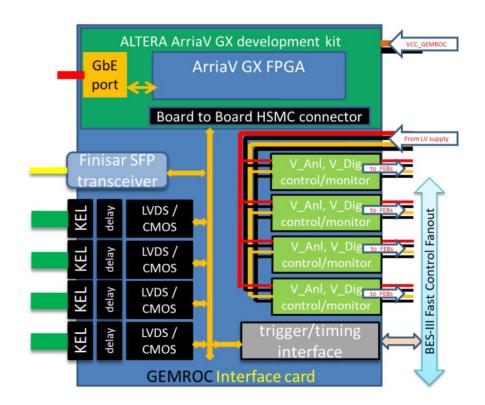
Final readout chain

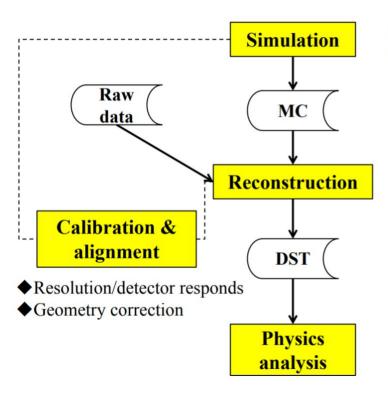



TIGER chip

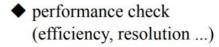
- TIGER: Torino Integrated Gem Electronics for Readout is a chip that provides time and charge measurement and features a fully digital output
- Each chip has 64 channels
- Two readout methods are implemented: "sample and hold" or "time over threshold"

Parameters	Value
Input Charge	2-50 fC
Input Capacitance	Up to 100 pF
Data Rate	60 kHz/ch
Readout Mode	Trigger-less
Non-linearity	<1%
Charge Collection Time	60 ns
Time resolution	<5 ns
Power Consumption	<12 mW/ch
Technology	110 nm process




GEM - Read Out Card module

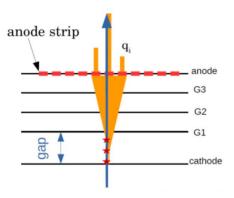
- The off-detector readout electronics GEM-ROC manages the LV, the configuration of the TIGER and the data collection from the detector to the DAQ computer
- For each signal above the threshold, the TIGER chip sends its output to the GEMROC
- The GEMROC recoveries the data from the proper memory slot for each trigger
- The entire readout electronics is designed to take care to up to 10k channels and a rate of 50 kHz per channel




CGEM - Bes Offline Software System

CGEMBOSS is the BESIII collaboration framework used for the data reconstruction, for simulation and physics analysis

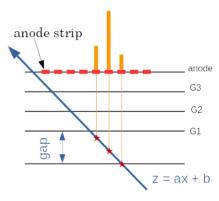
- ◆ Detector description (Geometry/material)
- **◆**Digitization
 - ◆Cluster reconstruction
- ◆Track segment finding with CGEM
- **◆**Track matching
- ◆Global track finding with Hough transform
- ◆Track fitting



Cluster digitization

Contiguous strips with charge higher than the threshold

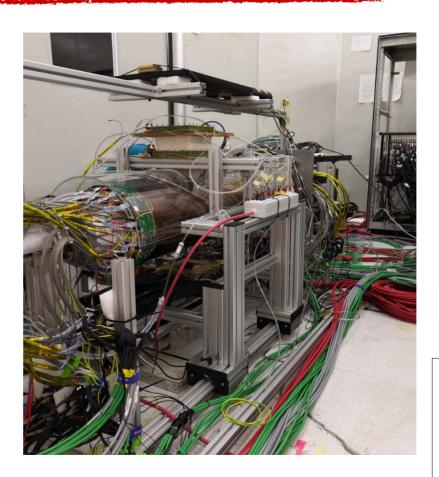
particle position reconstruction \rightarrow two algorithms are used:


Charge Centroid

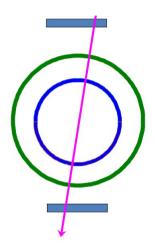
position reconstructed as average of the fired strips weighted by the charge on each strip

$$x_{\text{CC}} = \frac{\sum_{i}^{N_{\text{hit}}} Q_{\text{hit},i} x_{\text{hit},i}}{\sum_{i}^{N_{\text{hit}}} Q_{\text{hit},i}}$$

micro-TPC



drift gap as a TPC gives the position of each ionization by the drift time and velocity → linear fit

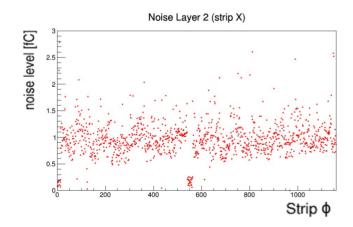

$$x_{\mu \text{TPC}} = \frac{gap/2 - b}{a}$$

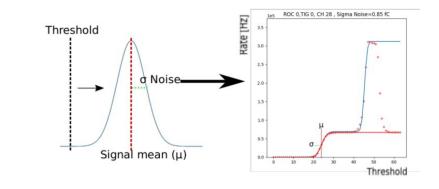
Cosmic setup status

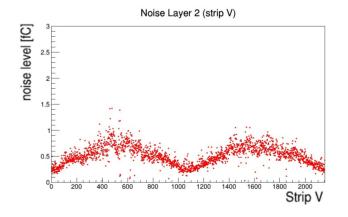
- Two CGEM layers have been installed in a clean room in **Beijing** with a trigger system
- About **5k channels** are instrumented and readout by the on-detector and off-detector electronics
- **Debug** of the DAQ chain and the noise optimization are **ongoing**
- Fine alignment and time calibration are **not** yet implemented
- The third layer will be integrated with the other two after the summer
- An aluminum cylinder sustains the detectors

Cosmic ray
Scintillating bar
Layer 1
Layer 2

CGEM numbers

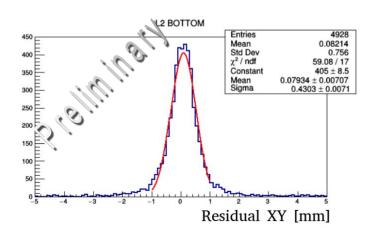

pitch: $650 \mu m$ gas mixture. : Ar+10%C₄H₁₀ radius: 76.9 mm / 121.4 mm

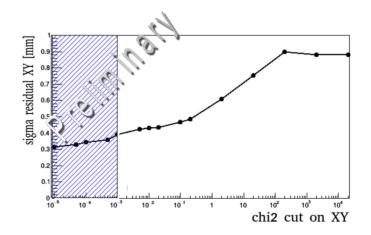

lenght: 532 mm / 690 mm



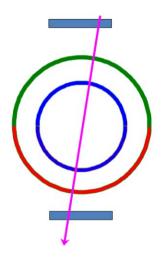
Setup configuration: thresholds

- Calibration of the threshold performed channel by channel
- On chip test pulse is used to measure the width of the noise distribution
- Different behavior for strip X and V due to different strip lengh
- Equalization of the noise rate around 5kHz/channel

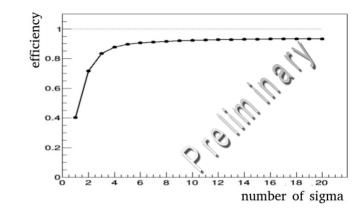




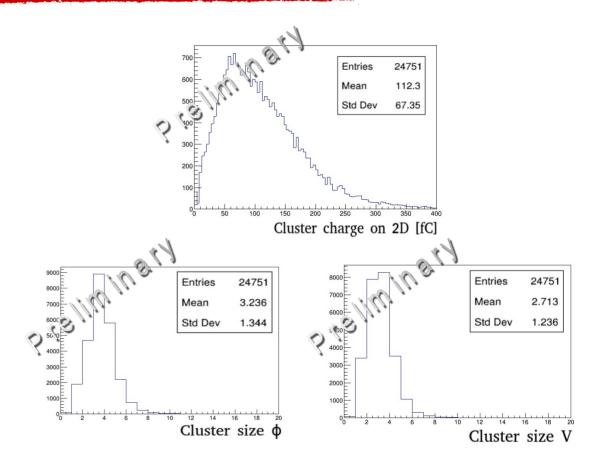
Tracking system and signal evaluation


- Each cosmic ray creates two clusters for each CGEM layer: three points tracks the cosmic ray while the fourth characterizes the CGEM signal/detector
- The residual distribution of the fourth point position is fitted with a Gaussian distribution
- A selection of the good tracks is performed with a chi2 cut on the tracking system
- The position of the clusters up to now is measured with **charge centroid only**

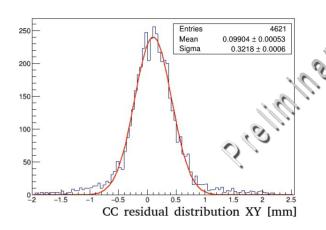
INSTR20 24-28 Febr. 2020 - Novosibirsk

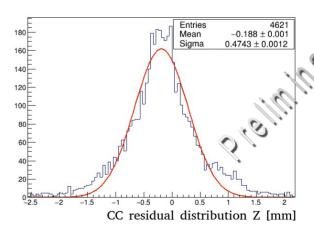

Cosmic ray Scintillating bar Layer 1 trks Layer 2 trk Laver 2 test

CGEM efficiency vs sigma of signal

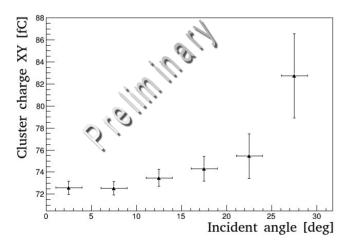

- A Gaussian fit on the **residual distribution** is used to evaluate its sigma, then the range of good signal clusters
- A first preliminary measurement of the CGEM at plateau of 90-92 % on the double view if five sigma is reached
- Good events are still in the tails of the residual distribution due to problems in the recostruction (missing strips, mechanical support interference, etc ...)
- Actual DAQ chain bugs recude the data comunication efficiency to 92-94 %

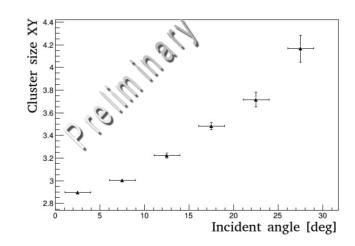
$$\epsilon = \frac{n^{\circ} of \ events \ in \ N_{sigma}}{n^{\circ} \ of \ qood \ tracks}$$

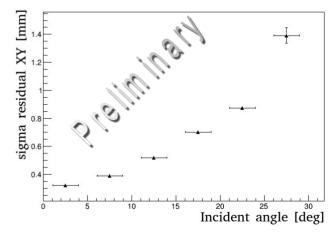

Signal characterization


- Studies of the detector behavior are performed with the clusters within five sigma of the residual distribution
- A mean cluster charge above 100 fC on the 2D and a cluster size of about 3 for each view have been measured, as expected in this setup configuration

Charge Centroid performance

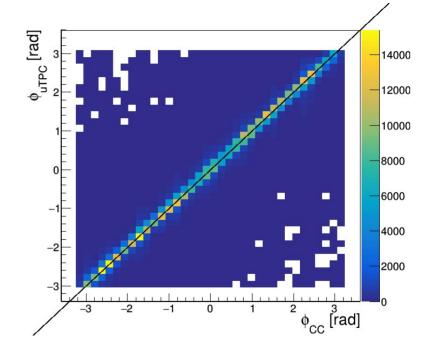

- Despite the setup is **not optimal** due to the interference of the mechanical support, calibration and alignment not fully applied, good results have been achieved
- A Gaussian fit of the residual distribution of the CC position is used to extract a raw measurement of the resolution of the detector: the **sigma** of the fit contains the contribution of the test chamber resolution and the one of the tracking system
- Good tracks are selected with the chi2 cut and an incident angle orthogonal to the **CGEM**
- A Monte-Carlo simulation is used to evaluate the tracking system contribution. A resolution of about 250 µm in XY plane and 350 µm in Z direction have been extracted, if the resolution of each part of the detector is supposed to be the same.





Charge Centroid performance

- Evaluation on the single view (XY) of the cluster charge, size and CC residual shows a dependency of these variables on the incident angle between the cosmic ray and the CGEM surface
- As the angle increases, the cosmic ray ionizes on a longer path then charge and size increase too
- As the angle increases, the charge distribution collected at the anode is no more Gaussian and the CC degrades, as expected from planar triple-GEM studies



First µ**TPC** event in a CGEM

- Time reconstruction is needed to extend the effectiveness of the reconstruction in the region where the CC degrades
- A first implementation of the µTPC method has been implemented in CGEMBOSS and the preliminary result shows a good correlation with the CC
- The reconstruction efficiency of this algorithm is above 98% if a cluster has at least 2 strips
- This method is more complicated than the CC and more work is needed for a proper reconstruction

Conclusion

- A cosmics ray stand has been instrumented with two CGEM layers in the last three months
- The detectors have been **integrated** with the final readout chain: more that 5k channels, 86 TIGER chips and 11 GEMROCs together with proper softwares to control configuration and acquisition (GUFI) and data reconstruction (CGEMBOSS)
- The noise level is in a good shape, within the expectations
- Despite the preliminary configuration of the setup and the work needed to improve the present situation, the signal shape (charge and size) follows the results from testbeams
- A **nice resolution of the CC** has been evaluated and the results in the Z direction are three times better than the current BESIII-MDC resolution
- ullet The first reconstruction with μTPC in a CGEM read out by the TIGER chip has been implemented successfully

Project supported by: