

Time-of-flight system of the MultiPurpose Detector at NICA

V. Babkin on behalf of the TOF group of the NICA/MPD experiment

Contents

- Physical goals of the MPD at I stage
- Requirements to the TOF system
- Design of the TOF barrel and MRPC
- Readout electronics
- MRPC test results
- > TOF performance
- > TOF mass production and testing
- Conclusions

The problem of studying hot and dense baryonic matter at NICA

MPD/NICA heavy ion programm:

- Main properties, EOS particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties onset of low-mass dilepton enhancement
- **Deconfinement (chiral) phase transition at high** ρ_B enhanced strangeness production
- QCD Critical Point event-by-event fluctuations & correlations
- Exotic (hypernuclei, etc.)

To study properties of phase diagram it is important:

- to have possibilities of fine scan on collision energy;
- to have **variety** of beam nucleus.

The basic requirements to the TOF system at Stage I of MPD are:

- phase space coverage $|\eta| < 1.4$;
- large area ~50 m²
- time resolution of < **100 ps**;
- high granularity to keep the maximum occupancy <15%;
- high geometrical efficiency >90%;
- separation of pions and kaons with up to p_t < 1.5 GeV/c;
- separation of (anti)protons with up to p_t < 3 GeV/c;

The best choice for this requirements is a Multigap Resistive Plate Chamber (**MRPC**).

First (basic) stage of the MPD experiment

Mechanical design of the TOF barrel

The same MRPC design successfully used at the BM@N experiment. Details is in poster #19 of Mikhail Rumyantsev

330

Signal readout

Signal connectors on the PCB

650

NINO based 24-ch preamplifier-discriminator PA24N2V2I with adapter board

Doubled twisted pair cable for transferring signal to the preamp

Front-end electronics

NINO based 24-channels preamplifier-discriminator board PA24N2V2I

Powering preamplifier board and connection scheme.

- ✓ Stabilization of the voltage (+2.5V);
- ✓ Differential input (Zdiff = 55 Ohm);
- ✓ Inputs capacitors for two-end strip readout;
- ✓ CXP (InfiniBand) 100 Ω output connector;
- ✓ Series "or" output for 24 channels;
- ✓ Time jitter (RMS) for one channel \approx 7 ps;
- ✓ "On board" slow control:
- voltage control & monitoring;
- preamplifier thresholds control;
- board temperature monitoring ± 0.5 °C;
- gas volume temperature monitor.

	V+, mV	V-, mV	Vdelta, mV	Vpower, mV	DAC, mV	Tboard, °C	Tgas, °C
1	1946	1741	1624	3248	2775	45	44
2	1693	1637	1544	3287	0	41	36
3	1687	1737	1735	3293	0	43	43
4	1940	1649	1627	3220	0	48	46
5	1914	1588	1615	3265	0	45	38
6	1993	1985	1741	3235	0	50	44
7	1754	1906	1731	3204	0	40	47
8	1777	1836	1860	3272	0	38	48
9	1915	1909	1655	3222	0	37	37
10	1864	1969	1703	3295	0	45	49
11	1855	1578	1841	3268	0	50	46
12	1610	1751	1908	3206	0	49	49
13	1976	1686	1611	3286	0	39	48
14	1693	1898	1787	3250	0	44	47
15	1788	1847	1517	3252	0	49	44
16	1503	1645	1761	3207	0	46	36
17	1711	1785	1990	3268	0	42	35
18	1746	1559	1676	3256	0	38	47
19	1788	1579	1829	3256	0	40	36
20	1514	1566	1641	3296	0	49	45

8860		Vset (V)	Vmeasure (V)	Vnominal (V)		Iset (mA)	Imeasure (mA)	Inominal (mA)	Statu	
61.1.1	Channel 0	6,00	6,00	17,60	Т	2 000,000	1 736,816 mA	5 050,049	O	
8868	Channel 1	6,00	6,00	17,60	T	2 000,000	1 741,699 mA	5 050,049	Or	
	Channel 2	6,00	6,00	17,60	Т	2 000,000	1 735,107 mA	5 050,049	Or	
	Channel 3	6,00	6,00	17,60	T	2 000,000	1 737,549 mA	5 050,049	Or	
	Channel 4	6,00	6,00	17,60	Т	2 000,000	1 737,061 mA	5 050,049	Or	
	Channel 5	6,00	6,00	17,60	T	2 000,000	1 732,422 mA	5 050,049	Or	
	Channel 6	6,00	0,00	17,60	Т	2 000,000	0,000 mA	5 050,049	Of	
	Channel 7	6,00	0,00	17,60	Т	2 000,000	0,000 mA	5 050,049	Of	
Cardal Marsha	Picture Britington			Produce supplies of a religion of a				Photoc Scharge		
Module Information			Module Supplies and Temperature				Module Settings			
Firmware Name: MPV8016			+ 5 Volt (V): 0.0			Voltage Limit (%): 0				
Firmware Release: n/a			+ 24 Volt (V): 0.0			Current Limit (%): 0				
Channel Number: 8			- 24 Volt (V): n/a			Voltage Ramo Speed (%): 0				
Channel Nur	Device Class: -1									
Channel Nur Device Class	s: -1			2012						

Slow control GUI clients (left side for FEE, right LV source)

Readout electronics (DAQ)

72-channels VME time-to-digital converter TDC72VXS

- ✓ VME64x interface with VXS;
- ✓ TDC type: timestamping HPTDC chip;
- ✓ Input: differential 100 Ω (LVDS);
- ✓ Resolution: 23.4 ps bin size ($\sigma_t \approx 18 \text{ ps}$ measured);
- ✓ Power consumption: +5V/0.13A; +3.3V/5.6A;

Standalone mode:

- ✓ Ethernet data transfer;
- ✓ Time synchronization by the White Rabbit.

MPD test beam at the Nuclotron

- two platforms made of aluminum profile;
- the precision positioning device (PD);
- three proportional chambers (MWPC 1, 2, 3) with an accuracy of determination of coordinate <1 mm;
- trigger scintillation counters (S1-S3);
- two independent gas system for various gas-filled detectors with different gas mixtures;
- data acquisition system (DAQ) based on the VME and Ethernet.

Triple-stack MRPC test results

Efficiency and time resolution of the MRPC versus particles flux

Detail geometry of the TOF for MPDRoot

200

1290/85

 0.9348 ± 0.000145

300 Z, cm

200

300

Z, cm

Mass-production of the TOF modules

Workshop staff: 3 physicists, 5 technicians, 2 electronics engineers Productivity: ~ 1 detectors per day (1 module/2 weeks)

All procedure of detector assembling and optical control is performed in a clean rooms ISO class 6-7

Ultrasonic wave glass cleaning

Painting of the HV conductive layer

MRPC assembling

Cables and connectors soldering

MRPC detectors quality control

Preliminary materials control (before assembling):

- ✓ glass integrity & thickness
- ✓ honeycomb & PCB flatness
- ✓ HV layer surface resistivity

MRPC detectors quality control

The quality control of the assembled detectors takes place in 5 stages.

Check list

- ✓ 1) Optical control (gap uniformity, cracks in glass)
- \checkmark 2) Primary HV testing (without gas) up to 6 kV
- ✓ 3) Readout pins and cables break, short-circuit and reversed polarity control
- ✓ 4) Full HV testing (after fast pumping and filling with working gas mixture) up to 12 kV
- ✓ 5) Transmission line impedance (reflection) control

✓ Ready for installation!

TOF modules assembling

Basic requirement is leakage of gas mixture <0.5 cm³/min per module (153 l)

V. BABKIN, TOF OF THE MPD

26.02.2020

Conclusions

- ➤ The technical design of the MPD TOF system is complete.
- All the materials for the TOF production purchased in full for the entire system. Mass-production started in 2019. At the moment we already produced 90 MRPCs (~33% of total).
- \succ 3 TOF modules are assembled. One of them tested on the cosmic stand.
- The development of the readout electronics is complete. Mass production of front-end boards is finished last year. 50% of readout TDCs are produced and tested.
- Service subsystems (LV, HV and gas system) purchase is complete.
- ➢ We plan to finish production and commissioning of the MPD TOF at the end of 2020.

This work is supported by the RFBR grant #18-02-40051

Thank you for the attention!