

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

National Superconducting Cyclotron Laboratory

NOVEL FOCAL PLANE DETECTOR CONCEPTS FOR THE NSCL/FRIB S800 SPECTROMETER

<u>Marco Cortesi</u>

National Superconducting Cyclotron Laboratory (NSCL) Facility for Rare Isotope Beam (FRIB) Michigan State University (MSU)

<u>Outline:</u>

- 1) Introduction (nuclear physicist experiment with RIBs)
- 2) S800 Spectrometer and Focal-Plane detector system upgrade
- 3) A new MPGD-based readout for the tracking system
- 4) A new concept for $\Delta E/E$ measurement based on ELOSS detector

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 1 February 2020, INST'20

Fantastic Nuclei and where to find them

Rare Isotope Beam Physics -> Projectile Fragmentation

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 2 February 2020, INST'20

Pre-FRIB Science Opportunities at NSCL with Fast, Stopped, Reaccelerated Beams

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 3 February 2020, INST'20

Major US Project: Facility for Rare Isotope Beams (FRIB)

-) Funded with financial assistance from DOE Office of Science (DOE-SC) with cost share and contributions from Michigan State University (MSU) & State of Michigan.

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 4 February 2020, INST'20

Fast-beam experiment with the S800

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 5 February 2020, INST'20

Current Design of the S800 FP Detectors System

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 6 February 2020, INST'20

Goal 1 \rightarrow Upgrade of the DC gas avalanche readout

Goal → development of a new readout based on a hybrid MPGD structure, for the upgrade of the Cathode-Readout Drift-Chamber (CRDC) based tracking system

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 7 February 2020, INST'20

Position-sensitive Micromegas readout

Giomataris et al. NIM A 376 (1996) 29 Micromesh Gaseous Chamber:

- -) a thin mesh supported by 50-100 µm insulating pillars, mounted above readout structure
- -) E field similar to parallel plate detector.
- -) $E_{ampl}/E_{drift} > 100 \rightarrow high e^{-}$ transparency

& ion back-flow suppression

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 8 February 2020, INST'20

Multi-layer THGEM (M-THGEM)

Manufactured by multi-layer PCB technique out of FR4/G-10/ceramic substrate

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 9 February 2020, INST'20

Design of the new MPGD-DC

Drift chamber based on hybrid MPGD readout

$CF_4/20\% iC_4H_{10}$ (40 Torr)

- -) 480 channels for the MM-readout
- -) 16 channels for the ionization chamber
- -) 16 spare channels

GET electronics fully integrated into the NSCLDAQ

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 10 February 2020, INST'20

30 mm

Beam Test @ the S800 focal plane

Settings:

- MPGD-DC detector replaced the CRDC₂
- Performance test (~7 hours) with 78 Kr $^{36+}$ (150 MeV/u) & fragmentation beam cocktail (Z ~ 4 to 36) from 86 Kr + Be (2.7 mm)

Waveform traces recorded for each "fired" pad

- Number of samples (up to 512 time "buckets")
- Clock "sampling" frequency (time/sample)
- Peaking time; gain

X → charge distribution (center of the gravity)
Y → Arrival time (external trigger)

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 11 February 2020, INST'20

Localization Capability: preliminary results

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 12 February 2020, INST'20

Summary expected MPGD-DC properties

-) Simple (construction) and robust \rightarrow expected lower aging problems compared to the CRDC -) Better ions-backflow suppression \rightarrow a few % compared to 60-70% of wire-based detector -) High detector gain @ low pressure (MM+THGEM) \rightarrow large dynamic range -) High counting rate \rightarrow faster gas + faster electronics + Multi-hit capability \rightarrow expected up to 3 time lower dead time (@ 5kHz beam rate) -) High granularity (all pad are readout individually) \rightarrow better position resolution along the dispersive coordinate (0.25 mm compared to 0.5 mm of the CRDC)

National Science Foundation Michigan State University

$\Delta E/E$ limit of the current S800 PID

- -) ToF typically of 100-150 ns (15 m reaction target focal plane)
- -) Time resolution (plastic scintillator) ≈ 400 ps (FWHM)
- -) Energy resolution IC $\Delta E/E \approx 1.2\%$
- -) Good PID resolution up to A < 100

Improve $\Delta E/E$ to explore new regions of the nuclear chart for nuclear structure and nuclear astrophysical studies \rightarrow heavier beams expected from FRIB!

National Science Foundation Michigan State University

Goal 2 \rightarrow Δ E/E measurement using Ionization chamber with optical readout

Energy Loss Optical Ionization System (ELOSS)

OIC operational principle:

- -) Gas excitation created along the particle track -> optionally electroluminescence mode of operation
- -) De-excitation with emission of prompt (fast decay time), scintillation photons (178 nm wavelength)
- -) The light is reflected by Al-foils \rightarrow large photon collection efficiency
- -) Light readout with array of PMTs
- -) Processed information $\rightarrow \Delta E/E$, Timing, Position capability

Choice of the scintillating medium

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 16 February 2020, INST'20

ELOSS prototype: design and work plan

12 PMTs for an effective area of 84x84 mm²

Work plan:

- -) Operation mode (Efficiency and resolution)
 - -) Primary scintillation vs stimulated electroluminescence
- -) Scintillating gases (Xe, Xe/CF₄, Ar/Xe, ...)
 -) Electroluminescence yield vs voltage (ionization chamber mode)
- -) Electroluminescence yield vs gas pressure
- -) Time resolution under difference operational conditions

Stimulated scintillation configuration

Electrodes

National Science Foundation Michigan State University

Marco Cortesi (MSU), Slide 17 February 2020, INST'20

ELOSS Prototype: GEANT4 simulations results

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 18 February 2020, INST'20

Summary expected ELOSS properties

Compared to conventional IC:

- -) A ("3 times") better resolving power
- -) Sensitivity to high-Z particles (above Z = 50)
- -) Larger dynamic range (sensitive also to light particles)
 - \rightarrow changing the pressure of the filling gas
- -) Higher rate capability (up to a few hundred of KHz)
 - \rightarrow i.e. Xe the light is emitted within a few hundred ns
- -) Good time resolution (< 100 psec) not possible with IC
- -) Localization capability (< 4 mm) not possible with IC

Stimulated Light Emission

Properties of Electroluminescence (no amplification):

- - -) Isotropic emission \rightarrow use reflectors for high ph. collection

National Science Foundation Michigan State University

Marco Cortesi (MSU), Slide 20 February 2020, INST'20

Preliminary results from other groups

Presented at the DREB2018 - 10th International Conference on Direct Reactions with Exotic Beams

Development of the gaseous Xe scintillation detector for the particle identification of high intensity and heavy RI beams

T.Harada^{A,B}, J.Zenihiro^B, S.Terashima^{B,C}, Y.Matsuda^{B,D}, H.Sakaguchi^E, S.Ota^F, M.Dozono^F, K.Kawata^F, K.Kasamatsu^{B,D}, S.Ishida^{B,D} Toho Univ.^A, RIKEN Nishina Center^B, Beihang Univ.^C, CYRIC, Tohoku Univ.^D RCNP, Osaka Univ.^E, CNS, Univ. of Tokyo^F,

Energy resolution

- the energy resolution 1.0% is achieved. (Xe 3atm ~ 5atm) Time resolution (F3 Pla TDC - Xe TDC)
- The time resolution 130ps is achieved. (Xe 4atm) Secondary beam (A/Q ~2.3 @ 300MeV/u)
- Z and A/Q were deduced from TOF between F1 Pla and F3 Pla and energy loss information of Xe detector, The resolution of $\Delta Z =$

0.2 (50 separation) is achieved.

- The resolution of dZ = 0.27 (Z=54) in high rate beam (55kppp) is achieved. (low rate : dZ = 0.19 at Z=54)

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 21 February 2020, INST'20

Detector efficiency vs Z-number

50.00

40.00

30.00

20.00

10.00

0.000

Low gain operation 100 ′⁸Kr ⊃ulse Height (a.u.) 80 60 40 20 0 8 200 300 <u>6</u> X-Coordinate (Pad #) 1.2 1.0 ł 0.8 Efficiency 0.6 0.4 0.2 High Gain 0.0 ow Gain 15 25 10 20 0 5 30 35 40 Atomic Number (Z)

High gain operation 100 50.00 Pulse Height (a.u.) 80 40.00 60 30.00 40 20.00 20 10.00 0.000 0 ġ 200 300 0 X-Coordinate (Pad #)

Large dynamic range!

Full detection efficiency for light elements (Z<10) recovered @ high detector gain. Localization of saturated traces based on fitting distribution tails.

National Science Foundation Michigan State University

ELOSS Prototype: GEANT4 simulations

GEANT4 snapshot with a reduced W_{sc}

Beam → ⁷⁸Kr³⁶⁺ (140 MeV/u)

GEANT4 parameters (Xe gas) <u>Primary scintillation yield W_{SC} = 7 ph/KeV</u> Literature → 13.8 ph/KeV soft X-rays - Arxiv:1009.2719 → 16.3 ph/KeV gamma - Arxiv:1409.2853 A lower W_{SC} is used to take into account gas impurity quenching & other effects (filling factor =0.64) <u>Hamamatsu PMT QE → 30%</u> Xe gas pressure → 1 atm <u>IC length → 25.7 cm</u> Foil reflectivity = 100% (Al foil) -> ≈90%

National Science Foundation Michigan State University Marco Cortesi (MSU), Slide 23 February 2020, INST'20