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Qutline:
1) Introduction (nuclear physicist experiment with RIBs)
2) S800 Spectrometer and Focal-Plane detector system upgrade
3) A new MPGD-based readout for the tracking system
4) A new concept for AE/E measurement based on ELOSS detector
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Pantastic Nuclei and where to find them

Nuclear Science Challenges addressed by Rare Isotope Beam Physics

Properties of atomic nuclei
+ Study of predictive model of nuclei & their interactions, Many-body problem & physics of complex system
Astrophysics: Nuclear Processes in the Cosmos
* Origin of the elements, energy generation in stars, stellar evolution & the resulting compact objects
Use atomic nuclei to tests of laws of nature
- Effects of symmetry violations are amplified in certain nuclei fragment yield after target
Societal applications and benefits ‘
* Medicine, energy, material sciences, national security, etfc. etc.
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Rare Isotope Beam Physics -> Projectile Fragmentation
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Pre-FRIB Science Opportunities at NSCL
with Fast, Stopped, Reaccelerated Beams
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Major US Project: Facility for Rare Isotope Beams
(FRIB)

-) Funded with financial assistance from DOE Office of Science (DOE-SC) with cost

share and contributions from Michigan State University (MSU) & State of Michigan.

-) Key features is 200 MeV/u

400 KW beam power (5x103238U/s) /i |

Tremendous discovery potential:
80% coverage Z < 82

-) Separation of isotopes in-flight
-) Science program requires range of
energies: Fast, Stopped, &

reaccelerated beams

-) Upgradable to 400 MeV/u & multi-use
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Fast-beam experiment with the S800
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Current Design of the S800 FP Detectors System
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Cathode Readout Drift Chamber (CRDC):
Position and angles
Two CRDCs, 1 m apart, with 30x60 cm? effective area
filled with CF4/(20%)iC4Ho

Ionization Chamber (IC):

Z number identification

16 stacked-parallel plate ion chambers (each 1" long).
filled with P10 (300-600 Torr)

-) Slow detector = low rate (<5KHz)
-) Low SNR

-) Good resolution only up to Z=50

-) Slow detector = low rate (<5KHz)
-) Position resolution & <Imm FWHM
-) Aging problems
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Goal 1 > Upgrade of the DC gas avalanche readout

Wire-Based Detector: drift strips
"Mechanics”, Economic but =
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Goal > development of a new readout based on a hybrid MPGD structure, for the upgrade of
the Cathode-Readout Drift-Chamber (CRDC) based tracking system
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Position-sensitive Micromegas readout

Giomataris et al. NIM A 376 (1996) 29
Micromesh Gaseous Chamber:

-) a thin mesh supported by 50-100 pym insulating pillars,

mounted above readout structure
-) E field similar to parallel plate detector.

-) Eampi/ Egrigr > 100 = high e- transparency
& ion back-flow suppression

Cathode

10-50kV/cm

'J’fzéé.é
NEEEE
I‘II‘Ii‘r|

Anode

M-THGEM

1.125 mm

Micromegas board

Intermediate “ZAP” board

Front-end “AsAd” electronlcs Wi i 480 pads 588 mm

(LR

620 mm

- National Science Foundation Marco Cortesi (MSU), Slide 8
@ Michigan State University February 2020, INST’20

NSCL



Multi-layer THGEM (M-THGEM)

Manufactured by multi-layer PCB technique out of FR4/6-10/ceramic substrate

————— -) No loss of charge = high gain @ low voltage
- \d i -) Robust avalanche confinement
Eprift \l L B l = lower_secondary effects

-) Long avalanche region
E&EE = high gain @ low pressure
-) Field geometry stabilized by inner electrodes

=> reduced charging-up
Cortesi et al., Rev. Sci. Ins. 88, 013303 (2017)
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Design of the new MPGD-DC

Drift chamber based on hybrid MPGD readout
CF,/20%iC4H, (40 Torr)

30 mm

Non-dispersive
coordinate
300 mm

Gas in-/out-let

MPGD-based readout

620 mm
' \ Dispersive
coordinate

Intermediate Zap board

(include protection circuitries for the GET electronics and
16X2 channels reserved for the lonization chamber signals)

108.6 mm

Front end AsAd board

-) 4 AGET per board, 64 channel each = 512 channels
-) 480 channels for the MM-readout

-) 16 channels for the ionization chamber

-) 16 spare channels

GET electronics fully integrated into the NSCLDAQ

National Science Foundation Marco Cortesi (MSU), Slide 10
Michigan State University February 2020, INST’20




Beam Test @ the S800 focal plane

Settings:

* MPGD-DC detector replaced the CRDC,

* Performance test (~7 hours) with 78Kr3¢+ (150 MeV/u) &
fragmentation beam cocktail (Z ~ 4 to 36) from 8Kr + Be (2.7 mm)

Waveform traces recorded for each "fired” pad
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* Number of samples (up to 512 time “buckets”)

* Clock “sampling” frequency (time/sample . .. ) )
. Peakingtimpe— ggain quency (time/sample) X = charge distribution (center of the gravity)
. ' Y = Arrival time (external trigger)
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Localization Capability: preliminary results
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Summary expected MPGD-DC properties

-) Simple (construction) and robust
> expected lower aging problems compared to the CRDC

-) Better ions-backflow suppression
> a few % compared to 60-70% of wire-based detector

-) High detector gain @ low pressure (MM+THGEM)

- large dynamic range

-) High counting rate
- faster gas + faster electronics + Multi-hit capability
> expected up to 3 time lower dead time (@ 5kHz beam rate)

-) High granularity (all pad are readout individually)

- better position resolution along the dispersive coordinate
(0.25 mm compared to 0.5 mm of the CRDC)
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AE/E limit of the current S800 PID

-) ToF typically of 100-150 ns (15 m reaction target - focal plane)
-) Time resolution (plastic scintillator) # 400 ps (FWHM)

-) Energy resolution IC AE/E # 1.2%
-) Good PID resolution up to A < 100

(1.2%) Present lon Chamber
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Cerizza,et al, Phys. Rev. C 93, 021601 (2016)
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Improve AE/E to explore new regions of the nuclear chart for nuclear structure
and nuclear astrophysical studies = heavier beams expected from FRIB!
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Goal 2 > AE/E measurement using

Tonization chamber with optical readout
Enerqgy Loss Optical Ionization System (ELOSS)

Scintillation light Side view
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OIC operational principle:

-) Gas excitation created along the particle track -> optionally electroluminescence mode of operation
-) De-excitation with emission of prompt (fast decay time), scintillation photons (178 nm wavelength)
-) The light is reflected by Al-foils = large photon collection efficiency

-) Light readout with array of PMTs

-) Processed information = AE/E, Timing, Position capability
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Choice of the scintillating medium

. Alternative solutions > wavelength shifter
Noble gas & Mixtures -) Halocarbon-14 mixed with a noble gas (i.e. Ar)
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ELOSS prototype: design and work plan

12 PMTs for an effective area of 84x84 mm? 215

84

215
84
. .

Stimulated scintillation configuration

Work plan: Electrodes

-) Operation mode (Efficiency and resolution) T~
-) Primary scintillation vs stimulated electroluminescence
-) Scintillating gases (Xe, Xe/CF, Ar/Xe, ..)

-) Electroluminescence yield vs voltage (ionization chamber mode)

-) Electroluminescence yield vs gas pressure

-) Time resolution under difference operational conditions
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ELOSS Prototype: GEANT4 simulations results
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Summary expected ELOSS properties

Compared to conventional IC:

-) A ("3 times") better resolving power

-) Sensitivity to high-Z particles (above Z = 50)

-) Larger dynamic range (sensitive also to light particles)
= changing the pressure of the filling gas

-) Higher rate capability (up to a few hundred of KHz)
=> i.e. Xe the light is emitted within a few hundred ns

-) Good time resolution (< 100 psec) - not possible with IC
-) Localization capability (< 4 mm) - not possible with IC

L
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Stimulated Light Emission

Properties of Electroluminescence (no amplification):
-) Good linearity (# of ph. vs AE/E)
PMT -) Good intrinsic energy resolution (no amplification)

-) Large dynamic range (large pressure range)

Charged particle -) Conversion region & (optical) readout capacitive decoupled
-) Single photo-electron sensitivity = High SNR
-) Isotropic emission = use reflectors for high ph. collection
-) No aging problems
-) Timing (a few tens of ps) and localization (a few mm)

=> not possible with conventional IC
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Preliminary results from other groups

Presented at the DREB2018 - 10th International Conference on Direct Reactions with Exotic Beams

Development of the gaseous Xe scintillation detector for the
particle identification of high intensity and heavy RI beams

T.Harada®, J . Zenihiro®?, S.Terashima®€, Y.Matsuda®?, H.Sakaguchi¥, S.Ota¥,
M.Dozono", K.Kawata¥, K.Kasamatsu®P, S Ishida®?
Toho Univ.*, RIKEN Nishina Center®, Beihang Univ.“, CYRIC, Tohoku Univ.”
RCNP, Osaka Univ.E, CNS, Univ. of Tokyo!,

Energy resolution
- the energy resolution 1.0% is achieved. (Xe 3atm ~ 5atm)
Time resolution (F3 Pla TDC - Xe TDC)
- The time resolution 130ps is achieved. (Xe 4atm)
Secondary beam (A/Q ~2.3 @ 300MeV/u)
Z and A/Q were deduced from TOF between F1 Pla and F3 Pla
and energy loss information of Xe detector, The resolution of AZ =

0.2 ( 50 separation) is achieved.
- The resolution of dZ = 0.27 (Z=54) in high rate beam (55kppp)
is achieved. (low rate : dZ = 0.19 at Z=54)

@
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The PMT was developed for liquid Xe
:2inch
window Material :Synthetic silica glass

Spectral Response Range :160~650nm
Synthetic silica glass 5mm'+ PMT  Q.E at 175nm : 30% /
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Detector efficiency vs Z-number

Efficiency

Low gain operation High gain operation
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ELOSS Prototype: GEANT4 simulations

GEANT4 snapshot with a reduced Wy, GEANT4 parameters (Xe gas)
: Primary scintillation yield W< = 7 ph/KeV
Literature & 13.8 ph/KeV soft X-rays - Arxiv:1009.2719
= 16.3 ph/KeV gamma - Arxiv:1409.2853
A lower W is used to take into account gas impurity quenching
& other effects (filling factor =0.64)
Hamamatsu PMT QE = 30%
Xe gas pressure =2 1 atm
IC length & 25.7 cm
Foil reflectivity = 100% (Al foil) -> #90%
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