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Outline:
1) Introduction (nuclear physicist experiment with RIBs)

2) S800 Spectrometer and Focal-Plane detector system upgrade

3) A new MPGD-based readout for the tracking system

4) A new concept for ΔE/E measurement based on ELOSS detector
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Nuclear Science Challenges addressed by Rare Isotope Beam Physics

Properties of atomic nuclei 
• Study of predictive model of nuclei & their interactions, Many-body problem & physics of complex system

Astrophysics: Nuclear Processes in the Cosmos
• Origin of the elements, energy generation in stars, stellar evolution & the resulting compact objects

Use atomic nuclei to tests of laws of nature
• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits
• Medicine, energy, material sciences,  national security, etc. etc.

Rare Isotope Beam Physics -> Projectile Fragmentation

Fantastic Nuclei and where to find them
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Pre-FRIB Science Opportunities at NSCL
with Fast, Stopped, Reaccelerated Beams
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Major US Project: Facility for Rare Isotope Beams 
(FRIB)

-) Funded with financial assistance from DOE Office of Science (DOE–SC) with cost
share and contributions from Michigan State University (MSU) & State of Michigan.

-) Key features is 200 MeV/u
400 kW beam power (5x1013 238U/s)
Tremendous discovery potential:

80% coverage Z < 82

-) Separation of isotopes in-flight

-) Science program requires range of
energies: Fast, Stopped, &

reaccelerated beams

-) Upgradable to 400 MeV/u & multi-user

HRSHRS
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Focal Plane detector system for heavy-ion PID

Fast-beam experiment with the S800

15 m
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Current Design of the S800 FP Detectors System

Hodoscope
TKE, isomer tagging

Ionization Chamber
ΔE

Plastic Scintillator
TOF

CRDC
Tracking

BeamSame basic design planned for the HRS

Low SNR <1mm
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Goal 1  Upgrade of the DC gas avalanche readout

CRDC MPGD-DC



Marco Cortesi (MSU), Slide 8

February 2020, INST’20

Position-sensitive Micromegas readout

Micromesh Gaseous Chamber: 

-) a thin mesh supported by 50-100 μm insulating pillars, 

mounted above readout structure
-) E field similar to parallel plate detector.

-) Eampl/Edrift > 100  high e- transparency 

& ion back-flow suppression

Giomataris et al. NIM A 376 (1996) 29

480 pads
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Multi-layer THGEM (M-THGEM)

2-Layer M-THGEM 3-Layer M-THGEM

-) No loss of charge  high gain @ low voltage
-) Robust avalanche confinement 

 lower secondary effects
-) Long avalanche region 

 high gain @ low pressure
-) Field geometry stabilized by inner electrodes

 reduced charging-up

Cortesi et al., Rev. Sci. Ins. 88, 013303 (2017)

Manufactured by multi-layer PCB technique out of FR4/G-10/ceramic substrate

Single 3-layer M-THGEM

AT-TPC & pure gasesLow pressure 
applications
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Design of the new MPGD-DC

GET electronics fully integrated into the NSCLDAQ

CF4/20%iC4H10 (40 Torr)

Dispersive
coordinate

Non-dispersive 
coordinate
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Beam Test @ the S800 focal plane

Settings:
• MPGD-DC detector replaced the CRDC2

• Performance test (~7 hours) with 78Kr36+ (150 MeV/u) &
fragmentation beam cocktail (Z ~ 4 to 36) from 86Kr + Be (2.7 mm)

Waveform traces recorded for each “fired” pad

78Kr

X  charge distribution (center of the gravity)
Y  Arrival time (external trigger)

• Pulse Height

• Peak location (time)
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Localization Capability: preliminary results
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Summary expected MPGD-DC properties 

-) Simple (construction) and robust 
 expected lower aging problems compared to the CRDC

-) Better ions-backflow suppression 
 a few % compared to 60-70% of wire-based detector 

-) High detector gain @ low pressure (MM+THGEM)
 large dynamic range

-) High counting rate
 faster gas + faster electronics + Multi-hit capability
 expected up to 3 time lower dead time (@ 5kHz beam rate)

-) High granularity (all pad are readout individually) 
 better position resolution along the dispersive coordinate

(0.25 mm compared to 0.5 mm of the CRDC)
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Cerizza,et al, Phys. Rev. C 93, 021601 (2016)
Lise++ Simulations

ToF (a.u.)

Δ
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-) ToF typically of 100-150 ns (15 m reaction target – focal plane)
-) Time resolution (plastic scintillator) ≈ 400 ps (FWHM)
-) Energy resolution IC ΔE/E ≈ 1.2%
-) Good PID resolution up to A < 100

ΔE/E limit of the current S800 PID

Improve ΔE/E to explore new regions of the nuclear chart for nuclear structure 
and nuclear astrophysical studies  heavier beams expected from FRIB! 

(0.4%)(1.2%)
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ΔV

Goal 2  ΔE/E measurement using 
Ionization chamber with optical readout

OIC operational principle:
-) Gas excitation created along the particle track -> optionally electroluminescence mode of operation
-) De-excitation with emission of prompt (fast decay time), scintillation photons (178 nm wavelength) 

-) The light is reflected by Al-foils  large photon collection efficiency
-) Light readout with array of PMTs

-) Processed information ΔE/E, Timing, Position capability

Energy Loss Optical Ionization System (ELOSS) 
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Choice of the scintillating medium

Noble gas & Mixtures

Developed for LXe-TPC
Dark Matter Search

Alternative solutions  wavelength shifter 
-) Halocarbon-14 mixed with a noble gas (i.e. Ar)
-) Ar/Xe mixture
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ELOSS prototype: design and work plan

12 PMTs for an effective area of 84x84 mm2

Work plan:
-) Operation mode (Efficiency and resolution)

-) Primary scintillation vs stimulated electroluminescence 
-) Scintillating gases (Xe, Xe/CF4, Ar/Xe, …)

-) Electroluminescence yield vs voltage (ionization chamber mode)
-) Electroluminescence yield vs gas pressure
-) Time resolution under difference operational conditions

Electrodes

Stimulated scintillation configuration
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ELOSS Prototype: GEANT4 simulations results

σ = 26.5 ps

1 atm Xe (2.5 cm absorption thickness)
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Summary expected ELOSS properties 

Compared to conventional IC:

-) A (“3 times”) better resolving power

-) Sensitivity to high-Z particles (above Z = 50)

-) Larger dynamic range (sensitive also to light particles)

 changing the pressure of the filling gas

-) Higher rate capability (up to a few hundred of KHz)

 i.e. Xe the light is emitted within a few hundred ns

-) Good time resolution (< 100 psec) – not possible with IC

-) Localization capability (< 4 mm) – not possible with IC
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Stimulated Light Emission

+V

Charged particle

PMT

PMT

e-

Properties of Electroluminescence (no amplification):
-) Good linearity (# of ph. vs ΔE/E)
-) Good intrinsic energy resolution (no amplification)
-) Large dynamic range (large pressure range)
-) Conversion region & (optical) readout capacitive decoupled 
-) Single photo-electron sensitivity  High SNR 
-) Isotropic emission  use reflectors for high ph. collection
-) No aging problems
-) Timing (a few tens of ps) and localization (a few mm) 

 not possible with conventional IC

Edrift

Edrift
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Preliminary results from other groups  
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Detector efficiency vs Z-number

Low gain operation High gain operation

Large dynamic range!

Full detection efficiency for light elements (Z<10)

recovered @ high detector gain.

Localization of saturated traces based on fitting 

distribution tails.
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GEANT4 parameters (Xe gas)
Primary scintillation yield WSC = 7 ph/KeV

Literature 13.8 ph/KeV soft X-rays  – Arxiv:1009.2719
 16.3 ph/KeV gamma - Arxiv:1409.2853

A lower WSC is used to take into account gas impurity quenching
& other effects (filling factor =0.64)

Hamamatsu PMT QE  30%
Xe gas pressure  1 atm
IC length  25.7 cm
Foil reflectivity = 100% (Al foil) -> ≈90%

ELOSS Prototype: GEANT4 simulations

GEANT4 snapshot with a reduced WSC

Beam  78Kr36+ (140 MeV/u)


