

Outline:

- Motivation and introduction
- Barrel timing layer
- Endcap timing layer
- DAQ and clock distribution
- Conclusion

The MIP Timing Detector for the CMS Phase II Upgrade

Özgür Sahin

CEA Saclay - Irfu On behalf of the CMS collaboration

High Luminosity - Large Hadron Collider will deliver 10 times more integrated luminosity.

- CMS and ATLAS detectors will be upgraded (Phase II HL upgrade)
- Cope with the challenging conditions •
 - Extend the physics reach.

•

٠

•

٠

HL-LHC

- Significant challenge for the detectors; up to 5 times more average pile-up interactions.

- interactions hence worsen the physics performance.
- particles.

HL-LHC

Increase in the pileup interactions deteriorates association of the tracks with the hard

A timing detector that measures precisely the production time of MIPs will mitigate the pileup impact and enable new physics reach such as search for long-lived

Physics showcase studies

 $HH \rightarrow bb\gamma\gamma$ (200 Pileup Distribution)

Improve the efficiency of the Higgs self coupling measurements: more : than 20% improvement in the : HH→bbγγ.

detectors).

Direct measurement of the LLP mass (only possible with the timing

Significant benefits in the heavy ion physics such as charged particle identification capabilities.

MIP Timing Detector

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: $|\eta| < 1.45$
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

ETL: Si with internal gain (LGAD):

- On the CE nose: $1.6 < |\eta| < 3.0$
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{ed}/cm²

- The MIP timing detector (MTD) will have 35 ps resolution at the beginning of its lifetime.
- It will have an hermetic coverage up to $\eta=3$.
 - Why two different technologies?
 - Radiation hardness and cost!

•

у 📥 🔸

•

Cea

covering up to $\eta=1.48$.

•

•

tolerance.

35 ps resolution at the beginning of lifetime, 60 ps resolution by the end of lifetime.

Barrel timing layer

BTL Module: 1x16 crystals (32 channels) Crystal bar SiPMs

> **BTL Tray:** 6 Read-out units (4608 channels)

Barrel timing layer consists of 166k LYSO crystals (32 m2) readout with 332k SiPMs

LYSO crystals: high signal to noise ratio, signals with fast rise time, high radiation

Barrel timing layer

- ٠ consumption.
 - position.
- converters.

٠

۲

The readout is performed by silicon photo multipliers (SiPM) and the readout ASIC (TOFHIR).

Small cell size SiPM: fast readout, robust against magnetic field and radiation, low power

LYSO crystal bars read out on two sides - improved resolution and response insensitive to

The TOFHIR ASIC has 32 independent channels (can readout 16 crystals), each containing independent amplifiers, discriminators, time-to-digital converters and charge-to-digital

Barrel timing layer: test beam results

- Uniform time response and resolution obtained from both SiPMs, •
- Combining both SiPM provides $\sqrt{2}$ improvement in the resolution! •

Endcap timing layer

Endcap timing layer

LGAD The Ultra Fast Silicon Detectors can be achieved with an additional gain layer (LGAD) and are optimized for timing.

Common CMS & ATLAS development.

ETROC

•

•

p+ gain layer

- TOA (time of arrival) and TOT (time over threshold) measurements
- H-tree clock distribution.

JTE

The ETL readout ASIC (ETROC) is designed to handle a 16×16 pixel cell matrix

Each channel consists of a preamplifier, a discriminator, a TDC used to digitize the

Endcap timing layer: test beam

30 ps resolution with a 5x5 sensor with 1.3×1.3 mm² pixels,

Uniform time resolution of 40 ps after irradiation. •

•

ime resolution [s]

- Slow control, fast control and trigger signals are sent via the DAQ links. Therefore, all links are bidirectional and will operate at 10 Gb/s or 5 Gb/s.
- ETL: 1600 links (800 per endcap detector)
- **BTL: 864 links (432 concentrator cards)**
- MTD DAQ node has 2 FPGAs •

•

DAQ

Communication with the BTL frontend is established

the embedded clock.

Characterization results:

Backend system with characterization board frontend 12 ps RMS jitter at 160 MHz (BTL) and 5 ps RMS jitter at 40 MHz (ETL). Frontend system with an evaluation board backend 6 ps **RMS** jitter

IpGBT -> 3 ps/C and 4 ps/mV.

٠

٠

Clock distribution

- If the baseline clock distribution fails to meet the performance expectation, an alternative clock distribution scheme will be used.
- Clock is recovered from RFrx. The clock distributed to the frontend modules without encoding. Requires additional optical fiber and transceivers for each readout unit.
 - A clock distribution network better than few ps RMS jitter can be achieved.

Status and schedule

MTD HIGH LEVEL MILESTONES TIMELINE	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
		TDR Submiss	ion 🔶	BTL EDR	t	ETL EDR				
Barrel Timing Layer	Design - Demo.		Engin Proto.	Pre-prod.	Production and	integration	Install. ///	//// Tracker Ins	tallation	Comm.
Endcap Timing Layer	Design - Demo.		Engineerin	g - Prototyping	Pre-production	Pro	duction and inte	gration	Install.	Comm.

The projects is approved!

- TDR is public: https://cds.cern.ch/record/2667167/files/CMS-TDR-020.pdf
- Production:

•

•

•

•

۲

- BTL in 2021-2022, •
- ETL in 2022-2024 •
- Installation:
- BTL in 2023, •
- ETL in 2025.
- 2026 commissioning.

CMS A MIP TIMING DETECTOR FOR THE CMS PHASE-2 UPGRADE TECHNICAL DESIGN REPORT CERN-LHCC-2 ISBN: 978-92-90 2019-003 083-523-3

CERN European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

CERN-LHCC-2019-003 CMS-TDR-020 29 March 2019

A MIP Timing Detector for the CMS Phase-2 Upgrade **Technical Design Report**

Ö. Sahin

- Large Hadron Collider will undergo to a High Luminosity upgrade,
- Aims to deliver ten times more integrated luminosity, five times more pileup • interactions.
- Precision timing measurements (~30 ps resolution) will be an important tool to mitigate • the impact of the pileup.
- The MIP timing detector has an hermetic coverage up to $\eta=3$. It provides precision • timing for MIPs.
 - Mitigates the pileup impact effectively reduces the expected average pileup to the • current conditions.
 - Extend the physics reach. •
- BTL consists of LYSO crystals and read out with SiPMs and TOFHIR ASIC. •
- ETL employs LGAD sensors 1.3 mm² pixel, readout with ETROC ASIC. •
- Test beams are ongoing. The results are promising and meet the expectations.

•

Conclusion