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The PANDA detector system

p̄ beam

Target

Figure from PANDA website, https://panda.gsi.de/

Forward-spectrometer EMC
∼7 m downstream
1512 shashlyk cells ⇒ Area ≈ 3× 1.5 m2
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Detector characteristics

I Shashlyk calorimeters are common in high-energy physics
(RHIC, LHCb, COMPASS, etc.).

I In PANDA, calorimeter should be able to detect 10 MeV – 15
GeV ⇔ low threshold, large dynamic range.

I Need to minimise the photon-statistics contribution to:
I the energy resolution: 2–3%√

E (GeV)

I the time resolution: 100 ps√
E (GeV)

I Mainly achieved by optimising (lead/scintillator) sampling
ratio (design adapted from work done in the KOPIO
Collaboration)

I Detector read out by PMT → FPGA-based front-end digitiser
(∼ 125 MHz).
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Front-end digitiser module

2 x FPGA

Inputs for 32 photodetectors

2 × FPGA

32 × photodetector inputs

Figure courtesy of Pawel Marciniewski, Uppsala University.

DAQ
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Tasks of the front-end digitiser

I In the PANDA DAQ scheme, front-end electronics will act
autonomously on incoming signals. No “hardware trigger”.

I Event selection by high-speed computing nodes based on data
from multiple subsystems.

I Allows for flexible triggering, but places high requirements
on front-end electronics.

I In calorimeter: real-time “feature extraction” in FPGAs.

1. Identify signals
2. Extract pulse-height information.
3. Extract timing information.
4. Recover/reconstruct pile-up pulses.
5. Transmit only these extracted features.

I Aim of our work: Develop an FPGA triggering/feature
extraction algorithm for these tasks.
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Model development

I Detailed Geant4-based Monte Carlo model of detector
(shower profile, time constants, attenuation, PMT response,
electronic noise)

I Model has been validated against testbeam data (pulse height
and time resolution).
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New feature-extraction method
Basic considerations

I May first consider “reference” option:
I Waveform maximum ⇒ pulse height distribution
I (Digital) CFD ⇒ timing distribution
I Pile-up rejection

I Can one do better?
I Methods based on “Optimal Filter” (OF) are well known in

high-energy physics.
I Finite impulse response (FIR) filter ⇒ pulse amplitude and

time.
I Assume fixed pulse shape.
I Equivalent to χ2 fit of known pulse shape to data.
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New feature-extraction method
Adapting the OF

I Two main issues with using an OF in PANDA:
I No bunch-crossing information from accelerator ⇒ phase

between data and sampling clock not known.
I No pile-up reconstruction.

I To solve this, we propose:

1. Only include initial part of pulse (rising edge + maximum) in
OF “fit” ⇒ no contamination from pile-up.

2. Store several assumed pulse shapes, for different signal/clock
phases.

3. Analyse incoming data with digital CFD ⇒ estimate phase.
4. “Fit” correct assumed pulse shape ⇒ amplitude + more

accurate timing.
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New feature-extraction method
Modified OF
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New feature-extraction method
Time resolution — isolated pulse
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Major improvement in time resolution
Reason:
CFD uses linear interpolation
OF uses known pulse shape
⇒Constant term decreased by > 50%.
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New feature-extraction method
Resolution under pile-up conditions
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New feature-extraction method
Performance in the PANDA environment

1. PandaRoot Monte Carlo simulation of PANDA ⇒ energy
deposition from “background events” in the detector.

2. Task: detect a particular photon (Eγ)

3. Study resolution and efficiency for different average rates 〈R〉
in detector. Worst-case scenario: pp̄ = 15 GeV/c .
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New feature-extraction method
Pulse height resolution — pile-up pulse
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New feature-extraction method
Time resolution — pile-up pulse
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New feature-extraction method
Pulse-detection efficiency — pile-up pulse
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Pile-up rejection

Considerable improvement (over pile-up rejection)
In PANDA: hit rates > 100 kHz expected.
This method meets the requirements on pile-up reconstruction.
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Summary and outlook

I A real time method for feature extraction in the PANDA
shashlyk calorimeter has been developed (digital CFD + OF).

I Implemented in VHDL simulation for use in FPGA.
Benchmarked on model-generated signals.

I Significant improvement in overall time resolution compared
to standard linear CFD.

I Method allows for reconstruction of pile-up events.

I Good resolution and efficiency for reconstructing pile-up
events at high rates (> 100 kHz).

I Fulfills the PANDA requirements.
I Next steps:

I Implement in FPGA.
I Verify experimentally.
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Thank you for your attention!

Special thanks to the PANDA group at the University of Gießen for
providing experimental data.
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