KEK and its plans

Shoji Uno (KEK) Feb-24th, 2020 INSTR' 20 BINP, Russia

Electron machines in Tsukuba and proton machines in Tokai

Tokai sukuba

iònshu

Chiba o Nagoya obe Osaka

Tanegaishima

Kobe

© 2010 ZENRIN © 2010 Europa Technologies © 2010 Geccentral Catalogita Shukushuku Data © 2010 MIRC/JHA

SuperKEKB

ATE

PF. PF-A

Google

SuperKEKB

Nano beam collision Horizontal position (mm) Vertical beam size (µm) KEKB **SuperKEKB** E Ē Side view Side view $\sigma_{u_{2}}^{*} = \sigma_{u_{1}}^{*} = 50 \ [nm]$ $\beta_y^* = 0.3 \ [mm]$ 0.1 0.2 0.05 0.1 Top view x [mm] Top view ~10 mm 0.05 Electron Positron -0.1 ~0.5 mm ·0.1 -4 Longitudinal position (mm)

- Vertical beam size is much smaller.
 - $-2 \,\mu m \rightarrow 50 \,nm$
- Collision area is much smaller.
 - Even if bunch lengths are similar.
 - $-\sim 10 \text{ mm} \rightarrow \sim 0.5 \text{ mm}$

Nano beam collision Vertical beam size (µm) 5 KEKB **SuperKEKB** Ē Ē Side view Side view 5 à $\sigma_y^* = 50 \ [nm]$ $\beta_y^* = 0.3 \ [mm]$ 0.2 0.1 Horizontal position (mm) 0.2 0.05 0.1 Top view x [mm] Top view 0È ~10 mm 0.05 Electron Positron -0.1 ~0.5 mm -0.1 -4 Longitudinal position (mm) Z vertex distribution Entries / [0.01 cm] Belle II 2018 (preliminary) Belle case 1999 data 3000 Median=-0.015cm 80 (C) $\sigma_{68} = 0.055$ cm 2500 60 2000 Runs 1869-2047 1500 40 1000 20500 $\int Ldt = 24pb^{-}$ 0 0 10000 20000 7 -20000 -10000 0 -0.4-0.20.0 0.2 0.4 $Z(\mu m)$ -1.0 cm 1.0 cm z_0 [cm]

Specific luminosity

- Specific luminosity is increasing as a function of $1/\beta_v^*$ as expected, thanks to the nano beam collision scheme.
- Similar luminosity was ulletobtained with lower beam current, already.
- In near future, higher • luminosity will be obtained with higher beam current after the vacuum scrubbing.

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

Belle II

Belle II Collaboration

SuperKEKB/Belle II schedule

First collision

First hadronic event on April 26, 2018

200 150 - 100 - 50 - -100 - -150 - 200 - 200 - 200 - 200 - 200 - 200 - 100 - 100 - 100 - 200 - 100 - 200 - 100 - 200 - 100 - 200 - 100 - 20 Another first collision with full detector on March 25, 2019

Present status

• Luminosity

- Peak L ~ 1.1×10^{34} cm⁻²sec⁻¹
 - with smaller beam current (HER:360mA, LER:500mA) than KEKB and PEPII, thanks to smaller β_v^* (1mm).
 - Higher luminosity is expected after enough vacuum scrubbing.
- Integrated $L \sim 10 \text{ fb}^{-1}$
- Detector is basically working.
 - The performance is good enough to do physics.
 - Please hear each subdetector talk.
 - The beam background is still high as compared with KEKB/Belle.

due to lack of vacuum scrubbing time

Physics

- Physics capability is documented as following paper.
 - PTEP 2019, no.12 123C01(2019)
 - arXiv:1808.10567
- First physics paper was already submitted to Phys. Rev. Lett.

- arXiv:1912.11276

Search for an invisibly decaying Z' boson at Belle II in $e^+e^- \to \mu^+\mu^-(e^\pm\mu^\mp)$ plus missing energy final states

• More papers will come soon.

- Luminosity will increase due to more stored beam current(× 6), further squeezing beam at IP (× 3), and better beam-beam tune shift (× 4), after more machine study.
- The beam background will be reduced due to more vacuum scrubbing, more movable masks, more shield near detector and more machine tuning.
- Some upgrades are planed both for detector and accelerator.

J-PARC

J-PARC

- Multi-purpose research facility with hi-intensity proton driver:
 - Particle and Nuclear Physics
 - Material and Life Science
 ADS R&D
- Jointly operated by two organizations:
 - KEK, and
- JAEA
 For origin of
 - Matter and Universe
 - Diversity of material and life

T2K experiment

T2K collaboration

T2K experiment

- Long-baseline neutrino oscillation experiment
 - v mode: 1.78 (+ ~0.2) × 10²¹ POT
 - $-v mode: 1.65 \times 10^{21} POT$
- Indication of CP violation at 2σ . ۲

Near detector

- 40,000 photo sensors
- J-PARC neutrino facility (KEK)
 - Upgrade to 1.3MW J-PARC beam
 - Near/intermediate detector complex
- Start construction in 2020 and aim to start operation in 2027

X 8

22

Rare K decay in Hadron hall

- KOTO experiment : $K_L \rightarrow \pi^0 \nu \nu$
 - CP violation process and FCNC
 - BR(SM) = 3×10^{-11} : small theoretical uncertainty (~2%)
 - Challenging experimentally
 - Small Br and no charged particles

Results

2015 data PHYSICAL REVIEW LETTERS 122, 021802 (2019)

Search for $K_L \to \pi^0 \nu \bar{\nu}$ and $K_L \to \pi^0 X^0$ Decays at the J-PARC KOTO Experiment

J. K. Ahn,¹ B. Beckford,² J. Beechert,² K. Bryant,² M. Campbell,² S. H. Chen,³ J. Comfort,⁴ K. Dona,² N. Hara,⁵
H. Haraguchi,⁵ Y. B. Hsiung,³ M. Hutcheson,² T. Inagaki,⁶ I. Kamiji,⁷ N. Kawasaki,⁷ E. J. Kim,⁸ J. L. Kim,^{1,†} Y. J. Kim,⁹
J. W. Ko,⁹ T. K. Komatsubara,^{6,10} K. Kotera,⁵ A. S. Kurilin,^{11,*} J. W. Lee,^{5,‡} G. Y. Lim,^{6,10} C. Lin,³ Q. Lin,¹² Y. Luo,¹²
J. Ma,¹² Y. Maeda,^{7,4} T. Mari,⁵ T. Masuda,^{7,4} T. Matsumura,¹³ D. Mcfarland,⁴ N. McNeal,² J. Micallef,² K. Miyazaki,⁵
R. Murayama,^{5,4} D. Naito,^{7,4} K. Nakagiri,⁷ H. Nanjo,^{7,**} H. Nishimiya,⁵ T. Nomura,^{6,10} M. Ohsugi,⁵ H. Okuno,⁶ M. Sasaki,¹⁴
N. Sasao,¹⁵ K. Sato,^{5,††} T. Sato,⁶ Y. Sato,⁵ H. Schamis,² S. Seki,⁷ N. Shimizu,⁵ T. Shimogawa,^{16,4} T. Shinkawa,¹³
S. Shinohara,⁷ K. Shiomi,^{6,10} S. Su,² Y. Sugiyama,^{5,4} S. Suzuki,¹⁶ Y. Tajima,¹⁴ M. Taylor,² M. Tecchio,² M. Togawa,^{5,4}
Y. C. Tung,¹² Y. W. Wah,¹² H. Watanabe,^{6,10} J. K. Woo,⁹ T. Yamanaka,⁵ and H. Y. Yoshida¹⁴

(KOTO Collaboration)

$$BR_{K_L \to \pi^0 \nu \overline{\nu}} < 3.0 \times 10^{-9} (90 \% \text{ C} . \text{L})$$

Results

2015 data PHYSICAL REVIEW LETTERS 122, 021802 (2019)

Search for $K_L \to \pi^0 \nu \bar{\nu}$ and $K_L \to \pi^0 X^0$ Decays at the J-PARC KOTO Experiment

J. K. Ahn,¹ B. Beckford,² J. Beechert,² K. Bryant,² M. Campbell,² S. H. Chen,³ J. Comfort,⁴ K. Dona,² N. Hara,⁵
H. Haraguchi,⁵ Y. B. Hsiung,³ M. Hutcheson,² T. Inagaki,⁶ I. Kamiji,⁷ N. Kawasaki,⁷ E. J. Kim,⁸ J. L. Kim,^{1,†} Y. J. Kim,⁹
J. W. Ko,⁹ T. K. Komatsubara,^{6,10} K. Kotera,⁵ A. S. Kurilin,^{11,*} J. W. Lee,^{5,‡} G. Y. Lim,^{6,10} C. Lin,³ Q. Lin,¹² Y. Luo,¹²
J. Ma,¹² Y. Maeda,^{7,§} T. Mari,⁵ T. Masuda,^{7,‡} T. Matsumura,¹³ D. Mcfarland,⁴ N. McNeal,² J. Micallef,² K. Miyazaki,⁵
R. Murayama,^{5,¶} D. Naito,^{7,¶} K. Nakagiri,⁷ H. Nanjo,^{7,**} H. Nishimiya,⁵ T. Nomura,^{6,10} M. Ohsugi,⁵ H. Okuno,⁶ M. Sasaki,¹⁴
N. Sasao,¹⁵ K. Sato,^{5,††} T. Sato,⁶ Y. Sato,⁵ H. Schamis,² S. Seki,⁷ N. Shimizu,⁵ T. Shimogawa,^{16,¶} T. Shinkawa,¹³
S. Shinohara,⁷ K. Shiomi,^{6,10} S. Su,² Y. Sugiyama,^{5,¶} S. Suzuki,¹⁶ Y. Tajima,¹⁴ M. Taylor,² M. Tecchio,² M. Togawa,^{5,¶}
Y. C. Tung,¹² Y. W. Wah,¹² H. Watanabe,^{6,10} J. K. Woo,⁹ T. Yamanaka,⁵ and H. Y. Yoshida¹⁴

(KOTO Collaboration)

$$BR_{K_L \to \pi^0 \nu \overline{\nu}} < 3.0 \times 10^{-9} (90 \% \text{ C} . \text{L})$$

- New data (2016-2018) was unblinded and the preliminary result was presented at KAON2019.
- 4 events were found in the signal box.
- Experimental group is now checking those events carefully and has a plan to investigate the background further with the special setup in coming run period.

CLFV experiment in Hadron hall

- COMET Phase I experiment : $\mu \rightarrow$ e conversion in a muonic atom
 - Charged Lepton Flavor Violation (CLFV)
 - Current limit $< 7 \times 10^{-13}$ \rightarrow Aimed sensitivity $< 6 \times 10^{-15}$ $\times 100$ improvement
- The time structure (muon decay time) is important to reduce prompt beam background.
 - Small proton extinction was confirmed in the beam test.
- The detector is almost ready.
- Need to construct the proton target and the surrounding equipment.
- The first data taking will start in 2023.

Construction status

Upstream beam line is almost ready. It will be tested soon. Main tracking detector in Phase I (CyDet) is almost ready. Comic ray test is underway with full FE electronics.

IPNS supported Particle Physics at MLF

Neutron Hg target

• Sterile Neutrino Search JSNS², E56

Data taking will start soon. The time structure is important to reduce the background. 25Hz bunch structure

• Muon g-2/EDM, E34

• And neutron fundamental physics, e.g. life, EDM ...

Mid-term plan of MR J-P/

J-PARC mid-term plan

FX: The higher repetition rate scheme : Period 2.48 s -> 1.32 s for 750 kW.(= shorter repetition period)-> 1.16 s for 1.3 MWSX: Mitigation of the residual activity for 100kW

JFY	2017	2018	2019	2020	2021	2022	2023	2024	2028
Event -	/ buildings		HD target		Long shutdown				
FX power [kW] SX power [kW]	475 50	>480 50	>480 50	>480 70	\smile	>700 > 80	800 > 80	900 > 80	1300
Cycle time of main magnet PS New magnet PS	2.48 s	2.48 s Mass pro installati	2.48s	2.48s		1.32 s	<1.32s	<1.32s	1.16
High gradient rf system 2 nd harmonic rf system		Manufa	cture, installat	ion/test				=>	
Ring collimators	Add.collima tors (2 kW)				Add.colli. (3.5kW)				
Injection system FX system	Kicker PS improvement, Septa manufacture /test Kicker PS improvement, FX septa manufacture /test								
SX collimator / Local shields						Local s	hields	->	
Ti ducts and SX devices with Ti chamber	Ti-ESS-1	(Ti-ESS-2	11-10-01-01-0	079	4173				
			29						29

ILC

- International Linear Collider project
 - to study Higgs boson in detail.
- Japanese high energy community wants to host the project.
 - Some diet members strongly support us.
 - MEXT is also interesting in the project.
 - Those people are discussing the cost sharing and so on with US and European counties.
 - But, the cost is so huge. Not so easy to get the green light.

Summary

- KEK/IPNS has various on going projects and plans for flavor physics, energy frontier and others.
- SuperKEKB/Belle II has just started a year ago with full detector.
 - The nano collision scheme is working to get higher luminosity with smaller beam current.
 - Fruitful physics results will come soon.
- J-PARC has been running for 10 years.
 - T2K experiment shows 2σ indication of CP violation in the neutrino sector.
 - Hyper-Kamiokande project was officially approved, recently.
 - Data taking will start in 2027.
 - Several interesting projects are on going and will start soon.
 - Rare Kaon decay, Sterile neutrino search, CLFV experiment (COMET), etc.

Backup

KEK

IPNS is also collaborating with other world-wide institutes for various world top class projects.

More Power at MR \rightarrow 750 kW \rightarrow 1.3 MW

More Rapid Cycle:

 $2.48 \text{ s} \rightarrow 1.32 \text{ s} \rightarrow 1.16 \text{ s}$

- Main Power Supply to be renewed
- High gradient RF Cavity
- Improve Collimator
- Rapid cycle pulse magnet for injection/extraction

<u>More Protons /</u> Pulse :

- Improve RF Power
- More RF Systems
- Stabilize the beam with feedback

