Belle-II Level-1 Trigger

(2019/10,11,and12 so called "2019c")

Yoshihito IWASAKI (KEK)

2020/02/25

(a)

INSTR'20

SuperKEKB

- Asymmetric energy e+ e- collider to produce Upsilon(4s)
 - Beam energies : e+ : 4 GeV, e- : 7 GeV
- Target luminosity: 8x10³⁵ cm⁻²s⁻¹
 - 40 times higher than the KEKB luminosity record Beam currents x2, nano beam scheme x20

SuperKEKB: Luminosity in 2019c

- Peak luminosity record: 1.138x10³⁴ cm⁻²s⁻¹
 - With detector HV on
 - 1/80 of the target luminosity

SuperKEKB Continuous Injection

- KEKB employed continuous injection to maintain high instantaneous luminosity
- SKEKB needs it because of short lifetime of beams
- Injection occurs during detector HV on
 - L1 trigger should be vetoed to avoid contamination of injection noise

 Normal Injection Mode

 Continuous Injection Mode

05/31/2019 23:50 - 06/01/2019 23:50 IST

Belle-II Detector

- General purpose detector
 - Aiming for CPV in B and D mesons, SM tests, precise flavor physics, new particles, and search for dark sectors

Physics Targets

	Physics Process	Cross-Section (nb)	Rate @ L=8x1035 (Hz)		
ladror vents	uc Upsilon(4S)	1.2	960		
	Continuum	2.8	2200		
	μμ	0.8	640		
	ττ	0.8	640		
	Bhabha *	44	350		
	γ-γ *	2.4	19		
	Two photon **	13	10000		
	Total	67	~15000		

~1/2 of the max. L1 TRG rate (30kHz)

^{*} Rate of Bhabha and γ - γ are pre-scaled by factor 100

^{**} Rates are estimated by the luminosity component in Belle L1 trigger rate

Requirements for L1 TRG

- High efficiency almost 100% for hadronic events
 - No dead-time -> pipeline logic
 - Redundant and independent TRG logics -> CDC and ECL triggers
- Max. average L1 rate 30 kHz @ 8x10³⁵ cm⁻²s⁻¹
 - Limited by DAQ capability
 - Good background reduction necessary : S/N should be better than 1
 - Flexible TRG logics to manage BG rates : FPGA
- L1 latency 4.400 usec
 - Limit from SVD front-end
- Event timing precision less than 10 nsec
 - Request from SVD front-end
- Two-event separation 500 nsec
 - CDC max. drift time

Belle-II Level 1 TRG System

- All connections are optical links (2.54 6.27 Gbps)
- Each tracker can handle up to 4 tracks (total 16 tracks in each data clock)
- TSF, 2D, 3D, and ETF use Universal Trigger board (UT3, modules in 🔘)

CDC Trigger (2)

- (a) CDC Hits on Front-ends
- (b) Track Segment Finding
- (c) 2D Track Finding
- (d) 3D/Neuro Track Finding

Please check:

Development of the Level-1 track trigger with Central Drift Chamber detector in BelleII experiment and its performance in SuperKEKB 2019 Phase 3 operation, By YunTsung Lai (Poster session)

ECL Trigger

- Energy sum
- Cluster info. with energy and position (6 clusters of most energetic)
- Identification of Bhabha
- Event timing

The First "hadronic"-like event triggered by L1 TRG

26 April, 2018

L1 TRG Condition in 2019c

- Hadronic events (e+e- $\rightarrow q\bar{q}$)
 - Three-track, high energy(>1GeV), and #clusters≥4
- Low multi. events (τ pairs, mu pairs, two photons)
 - Two-track with opening angle(>90°), cluster combinations, etc
- Dark sector
 - Single cluster(>1GeV) w/o charged track, etc
- Bhabha and γ-γ
 - No pre-scale, all taken
- Calibration and test triggers
 - Many triggers were on for calibration and test purpose
- Random
 - Background data to overlay in MC data
 - Delayed Bhabha
 - Generate a trigger 7 revolutions after Bhabha: proportional to luminosity

Event timing

- ECL timing: 92%
 - Resolution was ~5ns for Bhabha, ~8ns for hadronic events
- CDC timing (if no ECL timing): 8%
 - Resolution was ~20ns

Because L1 TRG rate was quite lower than the DAQ limit, we could take these triggers w/o pre-

L1 TRG Rate in 2019c

- Luminosity record 1.14x10³⁴ cm⁻²s⁻¹ with detector HV on
- Total L1 TRG rate was 1 to 3 kHz
 - DAQ limit was ~15 kHz
 - TRG condition was quite loose
 - Expected physics rate was 0.7 kHz at luminosity record
 - Others are beam backgrounds and calibration/test triggers
 - Low purity : $S/N = 0.7/2.3 \sim 0.3$

TRG Efficiency in 2019c

- TRG performance in the online reconstructed data
 - Sample purity is not high enough to know real efficiencies
 - Efficiencies are underestimated
 - Three-track in hadronic events: ~80%
 - High-energy in hadronic events : ~90 %
- In the offline reconstructed data, we confirm
 - Three-track in hadronic events = 98.3%
 - High energy in hadronic events = 93.0% (at least)
 - Inefficiency for hadronic events = (1-0.98)*(1-0.93) < 0.01

L1 TRG Operation in 2019c

- TRG control online software had some troubles
 - Cause downtime of data taking
 - It was improved drastically during 2019 but still we have
- TRG performance online monitors were improved
 - We could know TRG malfunction as quick as possible
- CDC neuro 3D tracker
 - We confirmed neuro 3D tracker could reduce track trigger rate by 30% at least with lose of 1% hadronic event at most
 - Position resolution of z (along beam direction) was \sim 4cm
- TOP timing trigger operation
 - TOP timing logic worked well in cosmic test runs, but not usable in collision data taking
- KLM muon trigger operation
 - KLM trigger logic worked but suffered by large timing jitter so that we couldn't coincide with other triggers

UT3 and UT4

- Universal Trigger board (UT) has been developed since Belle experiment
 - General IO capability (optical transceiver was used since UT2)
 - All IO are connected to single large FPGA
- Belle-II L1 TRG heavily utilizes UT3 in all sub-triggers
 - Sharing common functions: clocking, IO I/F, VME I/F, data readout
- UT3 will be replaced with UT4

FPGA

Virtex6

XCVHX565

UltraScale

XCVU160

UT3

UT4

• More complex trigger logics can be used with larger size of data

Max. Transfer

speed / ch

II Gbps

25 Gbps

UT4

#cells

566,784

2,026,500

Summary

- TRG condition was quite loose
 - Because L1 TRG rate was far below the DAQ limit
 - TRG studies, developments, and debugging were easier
 - We may keep this condition in early 2020 runs
 - Until L1 TRG rate approach the DAQ limit
- L1 TRG performance was good
 - Main triggers (CDC and ECL) worked as expected
 - Inefficiency for hadronic events are less than 1%
 - Event timing jitter was OK (SVD data was fine)
 - Still we are trying to improve performance
- L1 TRG operation was stable
 - TRG control online softwares needs some improvements
 - Performance monitors worked well, still improving them
- Some L1 TRG components are still in commissioning
 - CDC 3D trackers will come soon
 - Neuro 3D tracker showed promising performance
 - Background induced track trigger rate will be decreased
 - TOP timing trigger and KLM muon trigger will come soon

Back-up

L1 TRG Veto for Cont. Injection

Expected TRG Rates

2019c Lum. Record

Process	C.S. (nb)	R@L=11x10 ³³ (Hz)	R@L=8x10 ³⁵ (Hz)	TRG logic	
Upsilon(4S)	1.2	13.2	960	CDC 3trk(fff) ECL high energy(hie) ECL 4 clusters(c4)	
Continuum	2.8	30.8	2200		
μμ	0.8	8.8	640	CDC 2trk(ffo)	
ττ	0.8	8.8	640	etc	
Bhabha	44	484	350 *	ECL Bhabha(bhabha,	
Υ-Υ	2.4	26.4	19 *		
Two photon	13	143	10000	CDC 2trk(ffo) etc	
Total	67	715	~15000		

• PS=1 for Bhabha in 2019c

KLM Trigger

- To provide muon hit information in L1 TRG
- Stably operated in 2019c
- Timing jitter was quite large
- Efficiency analysis is on going

TOP TRG

- To provide a good event timing information in L1TRG
- Hit timing information of 16 TOP bars are sent to two UT3s
- Stably operated in 2019c
- Timing performance was good in cosmic runs
- Efficiency was very low in collision data taking