

Development of compact micro-pattern gaseous detectors for application to the CEPC digital hadron calorimeter

<u>Daojin Hong^{1,2}</u>, Yi Zhou ^{1,2}, Boxiang Yu^{1,3}, Jianbei Liu^{1,2}

1 State Key Laboratory of Particle Detection and Electronics, China2 University of Science and Technology of China3 Institute of High Energy Physics of Chinese Academy of Sciences

2020.2.28

Outline

- CEPC
- CEPC baseline detector concept
- CEPC PFA HCAL Options
- MPGD for the CEPC DHCAL
 - 1. GEM
 - 2. RWELL
- Summary and plan

CEPC

• The Circular Electron Positron Collider (CEPC)

• Parameters:

Operation mode	\sqrt{s} (GeV)	$L~{ m per~IP} \ (10^{34}~{ m cm}^{-2}{ m s}^{-1})$	Years	Total $\int L$ (ab ⁻¹ , 2 IPs)	Event yields
\overline{H}	240	3	7	5.6	1×10^{6}

CEPC baseline detector concept

The CEPC baseline detector concept-guided by Particle Flow Principle

• Performance Requirements :

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH,Z\rightarrow e^+e^-,\mu^+\mu^- \\ H\rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H o \mu^+\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H o b ar{b}/car{c}/gg$	${\rm BR}(H\to b\bar b/c\bar c/gg)$	Vertex	$\begin{split} \sigma_{r\phi} = \\ 5 \oplus \frac{_{10}}{_{p(\text{GeV}) \times \sin^{3/2}\theta}} (\mu\text{m}) \end{split}$
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar q,WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\% \text{ at } 100 \text{ GeV}$
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E =}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

• Characteristic of PFA calorimeter:

- 1. High granularity
- 2. Minimal dead area
- 3. Compact

CEPC PFA HCAL Options

- HCAL options:
 - 1. Digital HCAL (DHCAL)
 - 2. Analog HCAL (AHCAL)
- Requirements of sensitive detector for HCAL:
 - 1. Compact
 - 2. High detection efficiency
 - 3. Small readout pads
 - 4. Minimal dead area
 - 5. Large size

MPGD could satisfy the requirements: one of candidates for CEPC HCAL

GEM for HCAL

- Typical MPGD: GEM detector
- To meet the requirement of compactness, a "3mm-1mm-1mm" double layer GEM detector was developed for DHCAL.

Regular three layer GEM detector

Double layer GEM detector

- Difficulties in development of the double layer GEM detector:
 - 1. Higher voltage added on each GEM foil
 - 2. Larger tension applied on GEM foils

Self-stretching technique

Self-stretching technique was applied in production of the double layer GEM detector.

Self-stretching technique (from CERN)

- Advantages:
 - 1. assembling process is easy and fast
 - 2. no dead area inside the active area
 - 3. uniform gas flow
 - 4. detachable

• 30 cm × 30 cm double layer GEM detector

Gain

• Test setup:

• 70%Ar+30%CO₂:

Gain uniformity: ∼16%

Energy resolution: ∼24%

• Maximum gain: \sim 3200

Cosmic ray test

- MICROROC is a digital readout chip developed for DHCAL.
- Detection efficiency and hit multiplicity have influence on energy reconstruction for DHCAL.

PMT1

GEM

PMT2

- Cosmic ray experimental setup:
 - 1. Digital ASIC chip: MICROROC
 - 2. Readout pad size: 1cm×1cm
 - 3. Threshold: 5fc
 - 4. Scintillator(trigger): 5cm × 5cm
- Four 8cm × 8cm corner areas were measured.

PC

DIF

Board

Trigger

Coincident

Discriminator

MICROROC

Test Board

Detection efficiency

- $70\%\text{Ar} + 30\%\text{CO}_2$: $10981/13000 \sim 84.5\%$ @3200 (Maximum gain)
- $95\%Ar + 5\%iC_4H_{10}$:

Detection efficiencies vary with voltage

Detection efficiencies in different area

- Detection efficiency: ~95% @5500 gain
- Detection efficiency in the four areas: >95%
- Working gas in the following studies: $95\%Ar + 5\%iC_4H_{10}$.

Hit Multiplicity

Hit Multiplicity: Average hit number per MIP event

- Combined with the detection efficiency, multiplicity is about 1.2 @95% detection efficiency.
- Multiplicity is related to gain of the detector with a 5fc threshold.

Another MPGD for DHCAL

Problems with the GEM detector for application to the DHCAL:

- 1. Hard to reduce dead area(\sim 10%) caused by the frame.
- 2. Complex mechanical structure
- Resistive WELL detector (RWELL): a simple and compact structure
 - 1. Only a drift gap
 - 2. One stage gas amplification
 - 3. Resistive layer
- Compare to GEM detector, it has advantages:
 - 1. No tension, no inner frame
 - 2. No transfer and induction gap

Gain

• Test setup:

- Gain uniformity is not good. Possible reason:
 - 1. Gas flow
 - 2. Uniformity due to the thermal boding procedure

Rate Capability

• RWELL is irradiated with 8 keV X-ray, and gain of the detector is almost no reduction@300kHz/cm² (Initial gain G0: \sim 5500).

Detector discharge while irradiated at a higher rate

Summary and plan

- Detection efficiency of the double GEM detector to MIP could reach 95% where the hit multiplicity is about 1.2 .
- Dead area of GEM detector using self-stretching technique is hard to reduce, then RWELL detector is developed as one of the candidates.
- A 25cm \times 25cm DLC-coating RWELL detector with thermal bonding technique has been preliminarily studied. Results show gain of the detector could reach 8000 with a 20% uniformity and rate capability could reach 300kHz/cm².
- Based on the results, RWELL detector is considered as a promising candidate. A $50 \text{cm} \times 100 \text{cm}$ RWELL detector is in preparation.

Thank you!

• Backup

Readout ASIC

Readout	Channel	Dynamic Rang	ge Threshold	Consumption
ASIC	S			
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC f MPGD	or Multiple	1mW/ch, 10μW/ch(ILC)
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	1.42mW/ch,10µW/ch(ILC)
MICROROC	64	1fC~500fC	Multiple	335μW/ch

MICROROC Parameters:

- 1. 64 Channels
- 2. 3 threshold per channel
- 3. Thickness: 1.4mm
- 4. 128 hit storage depth
- 5. Minimum distinguishable 18 charge:2fC