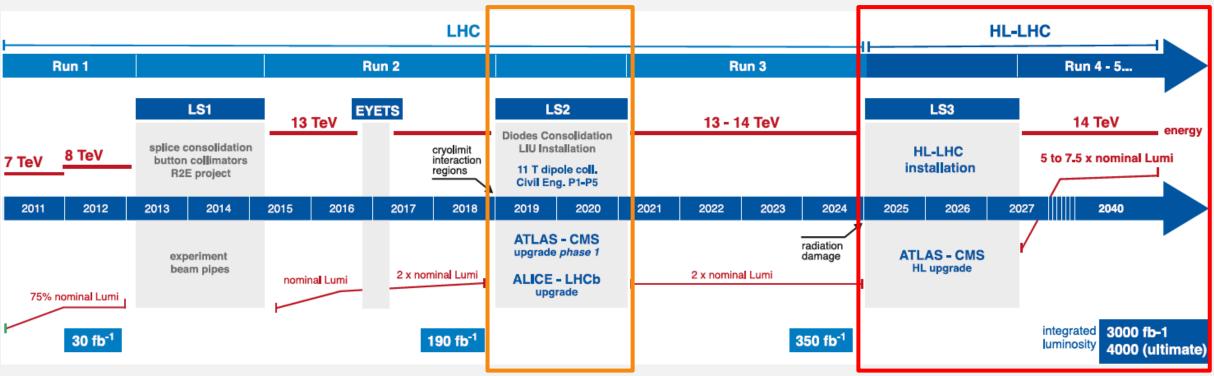


A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system: detector concept, description and R&D and beam test results

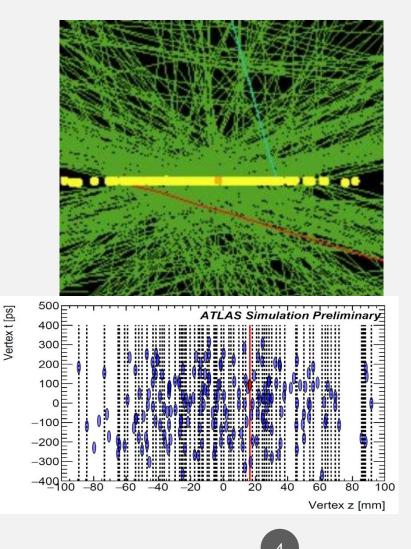
Lucía Castillo García on behalf of the ATLAS HGTD group - 26th February 2020



Overview

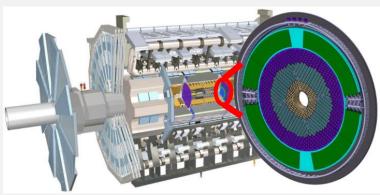
- Motivation: HL-LHC
- High Granularity Timing Detector (HGTD)
 - Overview and requirements
 - Layout
 - Hybrid module
 - Low Gain Avalanche Detectors (LGADs)
 - ATLAS LGAD Timing ReadOut Chip (ALTIROC)
 - $\,\circ\,$ Radiation hardness
- R&D program
 - Laboratory measurements
 - $\,\circ\,$ Test beam campaigns
- Summary and outlook

LHC Timeline



- In LS2, experiments will be upgraded for Run 3 that will start during 2021
- After Run 3, LS3 for a new experiment upgrade phase
- HL-LHC will start running in ~2027 with 5-7.5 times the nominal luminosity

High Luminosity phase will result in much more interactions per bunch crossing

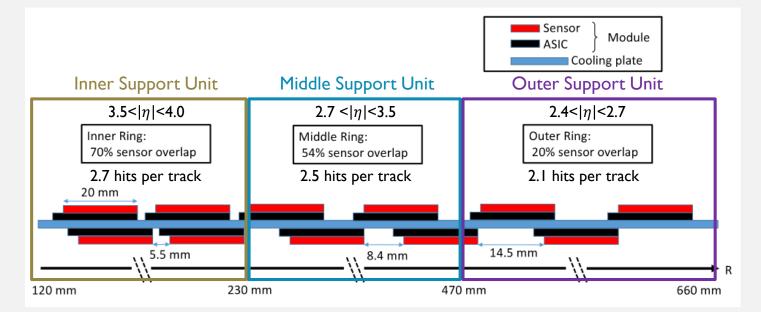

Why timing is needed in HL-LHC?

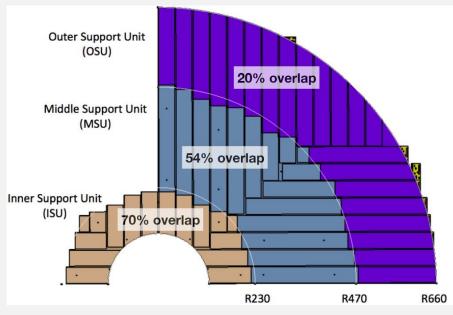
- High-Luminosity phase of LHC (HL-LHC)
 - Instantaneous luminosities up to L $\simeq 7.5 \times 10^{34}$ cm⁻² s⁻¹ (×5 current L_{inst})
 - Pile-up challenge
 - < μ > = 200 interactions per bunch crossing \rightarrow 1.8 vertices/mm on average
 - efficiently reconstruct charged particles
 - correct primary vertex association
 - Vertex reconstruction and physics objects performance in ATLAS experiment will be significantly degraded in the forward region where compared to the central region
 - Liquid Argon based electromagnetic calorimeter has coarser granularity
 - Inner tracker has poorer momentum resolution
- High Granularity Timing Detector (HGTD)
 - Proposed in front of the Liquid Argon end-cap calorimeters for pile-up mitigation
 - Improve performance in the forward region by combining
 - HGTD high-precision time measurement
 - ITk (new ATLAS tracker) position information (vertices longitudinal impact parameter)

HGTD overview and requirements

- HGTD designed for operation with $<\mu>$ = 200 and 4000 fb⁻¹
- Located in the gap region between the barrel and the end-cap calorimeters
- Silicon-based timing detector technology chosen due to the space limitations
- Two instrumented double-sided layers mounted in two cooling/support disks per end-cap

Pseudo-rapidity coverage	$\phantom{100000000000000000000000000000000000$	
Thickness in z	75 mm (+50 mm moderator)	Sensors (LGADs)
Position of active layers in z	$z = \pm 3.5 \mathrm{m}$	 Configurable in arrays
Weight per end-cap	350 kg	3 ,
Radial extension:		 Provide the required timing resolution in harsh radiation
Total	$110 \mathrm{mm} < r < 1000 \mathrm{mm}$	environments
Active area	$120 \mathrm{mm} < r < 640 \mathrm{mm}$	 Pad size of 1.3×1.3 mm² ensures
Pad size	1.3 mm × 1.3 mm	 Occupancy <10% at lowest radius (120 mm)
Active sensor thickness	50 µm	 Small dead areas between pads
Number of channels	3.6 M	- Low sensor capacitance
Active area	6.4 m ²	• Operated at -30 °C to mitigate impact of irradiation
Module size	$30 \times 15 \text{ pads} (4 \text{ cm} \times 2 \text{ cm})$	
Modules	8032	Custom ASIC (ALTIROC)
Collected charge per hit	> 4.0 fC	• To meet time resolution and radiation hardness requirements
Average time resolution per hit (start and end of operational lifetime)		• Provide functionality to count the number of hits registered in
$2.4 < \eta < 4.0$	\approx 35 ps (start) \approx 70 ps (end)	the sensor to allow bunch-by-bunch luminosity measurement
Average time resolution per track (start and end of operational lifetime)	\approx 30 ps (start) \approx 50 ps (end)	




HGTD layout

- Three rings layout optimised for timing performance and cost
- Coverage
 - Module overlap between layer sides optimised for uniformity
 - Average number of hits per track for the active regions
 - Disk rotation in opposite direction (15-20) to avoid gaps and maximize the hit efficiency

- Support structure
 - Each cooling/support disk is physically separated in two half circular disks
 - Support unit made of carbon fibre ensures exact

module position and alignment of x and y readout row

HGTD hybrid module

FLEX tail

HV connector

LGAD (4 x 2 cm²)

HV wire-bonding

Bump-bonding

• Low Gain Avalanche Detectors (LGADs) read out by dedicated front-end electronics ASICs (ALTIROC)

Connector

- Connected through flip-chip bump bonding process (hybridization)
- Total amount of bare modules: 8032
- Layout defined by maximising the coverage and minimising the effect of non-instrumented regions

Components

ASICs

Module FLEX

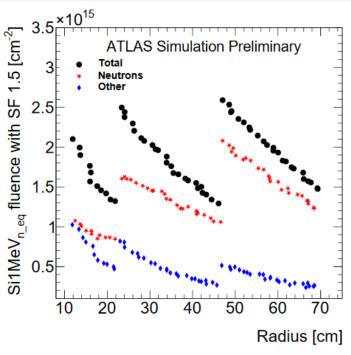
Wire-bonding

ALTIROC ASIC

- Minimize noise and power consumption
- Provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements
- Target time resolution <25 ps
- Developed in various phases
 - ALTIROC0: single-pixel analog readout (pre-amp + discriminator)
 - ALTIROCI: full single-pixel readout (analog + digital) in 5×5 arrays
 - ALTIROC2: final 15×15 pads version total size of 20×22 mm²
- Discriminator threshold of about 2 fC

Flexible printed circuit board Made of two pieces

- Bare module glued to small flex
- Routing all connections between ASIC and peripheral on-detector electronics
- \circ $\:$ Signal lines of ASIC wire bonded on it
- Bias voltage of sensor provided to the back-side through a hole
- $\circ~~$ 2 layer design with 220 μm thickness

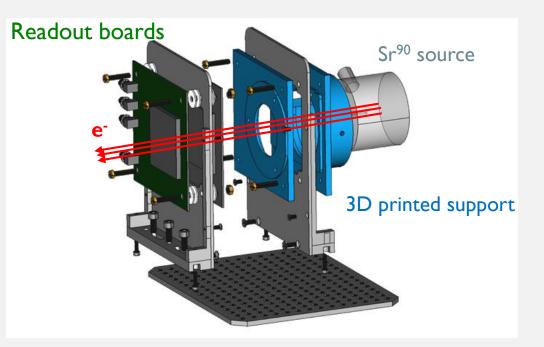

LGAD

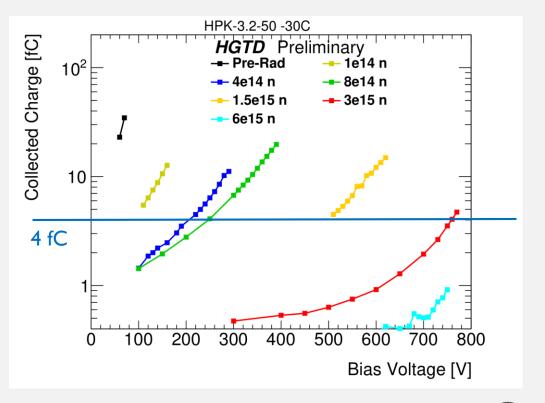
•

- n-p silicon planar detector + multiplication layer to amplify the signal
- High E field, moderate internal gain (10-50), typical rise time 0.5 ns
- Excellent time resolution <30 ps before irradiation
- \circ Pad size of 1.3×1.3 mm²
- \circ 15×30 pads, for a total area of 4×2 cm²

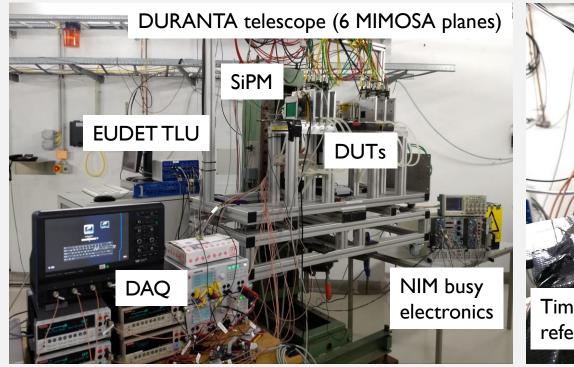
Radiation hardness

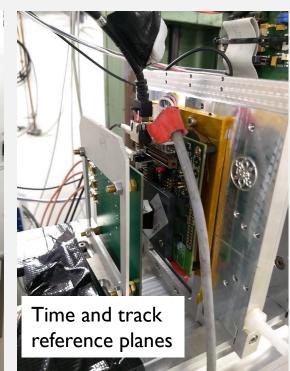
- It is crucial that the detector can withstand the lifetime of the HL-LHC running
- Maximum n_{eq} fluences 2.5×10¹⁵ n_{eq}/cm² and Total Ionising Dose (TID) 2 MGy at the end of HL-LHC (4000 fb⁻¹)
 - Replacement of sensors and electronics (~52%)
 - Innermost ring \rightarrow 3 times (after each 1000 fb⁻¹)
 - Middle ring \rightarrow once (at half lifetime 2000 fb⁻¹)
 - Account for uncertainties in the simulation and low dose rate effects on the electronics
 - a safety factor of 1.5 for the sensors \rightarrow more sensitive to the particle fluence
 - a safety factor of 2.25 for the electronics \rightarrow more sensitive to the TID
- Expected radiation levels in HGTD
 - Using Fluka simulations
 - \circ Inner ring ightarrow similar contribution from neutrons and charged particles
 - \circ Middle and outer rings ightarrow dominant effect comes from neutrons
- Radial transition between the three rings to be tuned for the final detector layout with updated FLUKA simulations

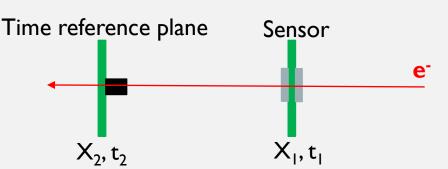

Laboratory measurements


• Setup

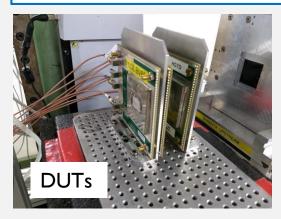
- Use Sr⁹⁰ source and commercial readout
- Temperature control with climate chamber
- Avoid condensation by providing dry air


- Different fluences for HPK-3.2-50 sensors after n irradiation
- Measurements were performed at -30 °C

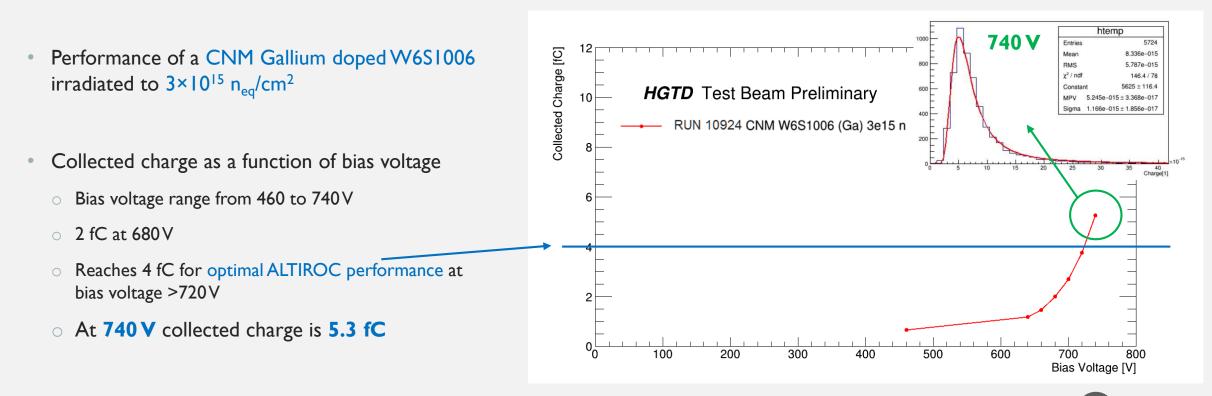




Test beam campaigns


- Different facilities:
 - CERN North Area SPS H6A & B beamlines (120 GeV pion beam)
 - DESY T22 beamline (5 GeV e⁻ beam)
 - Use of silicon sensor based telescope for tracking (EUDET-type)

- Performance
 - o LGADs
 - Un-irradiated and irradiated
 - Different geometries and vendors
 - Electronics and HGTD module
- Contributions to timing $(\sigma_{\Delta t=tl-t2})$



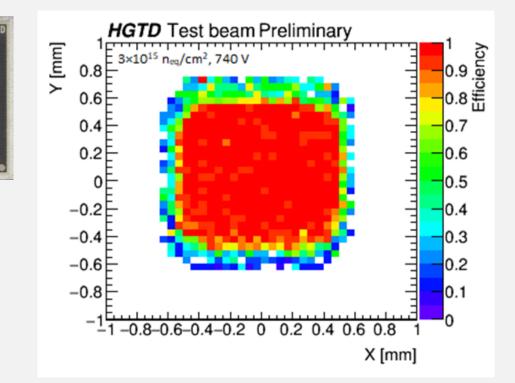
L. Castillo García

INSTR20 26th February 2020

LGAD collected charge

- Charge calculated as the integral of the signal area for each recorded waveform after pedestal substraction
- At each voltage point the collected charge is given by the MPV value of the Landau-Gauss fit of the events charge distribution

LGAD 2D efficiency map

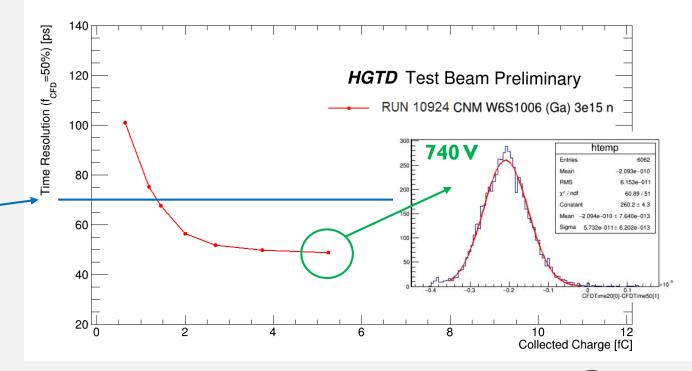

Efficiency as a function of the reconstructed position of particles for CNM W6S1006 3×10¹⁵ n_{eq}/cm² at bias voltage 740 V (5 °C difference from start and end of batch / ~0.1 mm/°C)

n

• Efficiency is defined as

 $\varepsilon = \frac{Tracks \ with \ charge > 2 \ fC}{Total \ number \ of \ Tracks}$

- A 2 fC threshold corresponds to \sim 15 mV for this voltage point
- ALTIROC expected to start to be efficient for charges >2 fC
- Average efficiency in the central 0.5×0.5 mm² area: 99,1%

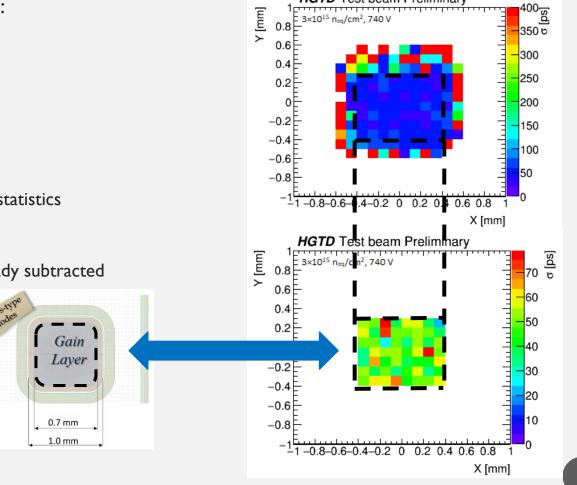


LGAD time resolution

 Timing distribution calculated as the difference between the time at f_{CFD}=50% for DUT and the time at f_{CFD}=20% for the unirradiated reference sensor

 $\Delta t = t_{DUT(f_{CFD}=50\%)} - t_{LGA35(f_{CFD}=20\%)}$

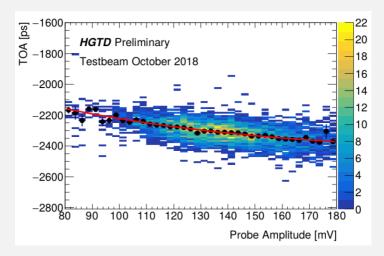
- Fraction defined by the dominant contribution
 - Un-irradiated sensor ightarrow Landau fluctuations
 - Irradiated sensor \rightarrow jitter (higher threshold)
- The time difference distribution is fitted with a Gaussian with the time resolution of the system defined as the σ of the Gaussian
- At **740 V**
 - Time resolution is 48 ps (<70 ps requirement)
 - The contribution of the reference sensor is subtracted (29.7 ps at -28 °C)

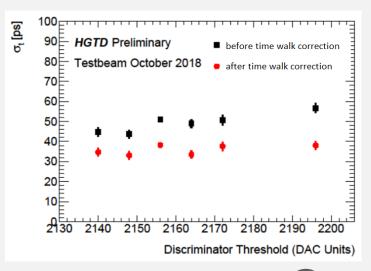


LGAD 2D timing map

- Time resolution as a function of the reconstructed position of particles for CNM W6S1006 3×10¹⁵ n_{eq}/cm² at 740 V
- Time difference distribution for each bin calculated as:

 $\Delta t = t_{DUT(f_{CFD}=50\%)} - t_{LGA35(f_{CFD}=20\%)}$


- A 2 fC threshold is applied
- Bin size of $100 \times 100 \ \mu m^2$ to ensure sufficient statistics
- Time resolution
 - Degrades at the sensor edges which also suffer from low statistics
 - Quite homogeneous at the central area (~55 ps)
 - The contribution of the reference sensor (29.7 ps) is already subtracted
- Pad region
 - \circ 0.7×0.7 mm² (gain layer implantation)
- Edge region
 - \circ 0.15×0.15 mm²



HGTD Test beam Preliminary

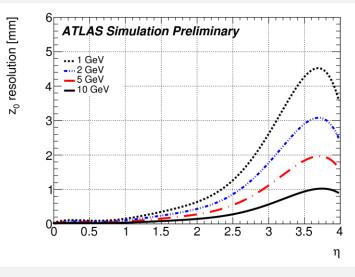
2×2 LGAD + ALTIROC results

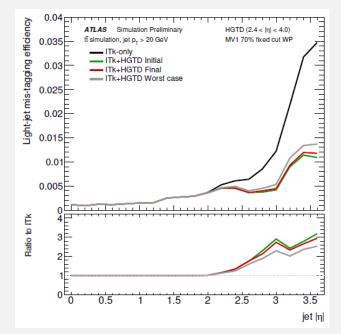
- ALTIROC0v2 bump bonded to a un-irradiated CNM 2×2 LGAD array
- October 2018 test beam at CERN SPS beam line with 120 GeV pions
- TOA of signal corrected for time walk effects
 - TOA vs amplitude of pre-amplifier probe signal
 - Black points correspond to profile of 2D distribution
 - Red line corresponds to polynomial fit use to correct for time walk effects
- Best achieved time resolution 35 ps after time walk correction
 - Time resolution vs discriminator threshold (in DAC units) before and after time walk correction
 - Amplitude of pre-amplifier probe use to correct for time walk
 - o 30% improvement
 - A SIPM is used as time reference where its 40 ps contribution is subtracted

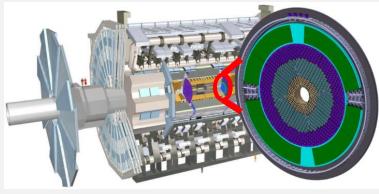
Summary and outlook

- The HGTD is proposed to mitigate pile-up effects and improve the performance in the ATLAS forward region
 - Challenging requirements to perform track-to-vertex association
 - Technical proposal was approved by LHCC [link to HGTD Technical Proposal]
 - HGTD community working to deliver Technical Design Report in April 2020
- Parameters as collected charge, time resolution and efficiency are studied and are close to the HGTD requirements
 - An extensive list of LGAD prototypes have been tested from different technologies and manufacturers and exploring new doping materials
 - \circ CNM Gallium doped LGAD irradiated to $3 \times 10^{15} n_{eq}$ /cm² performance at 740V is highlighted
 - LGAD reaches 4 fC for optimal ALTIROC performance
 - Efficiency in the bulk is 99.1% with a 2 fC threshold
 - Achieves a time resolution of 48 ps for $f_{CFD_{DUT}}$ 50% and $f_{CFD_{LGA35}}$ 20% (reference sensor contribution subtracted)
 - ALTIROC+LGAD results are promising

THANK YOU FOR YOUR ATTENTION

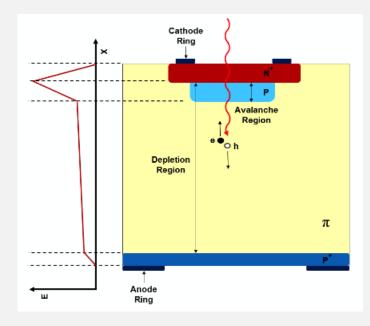


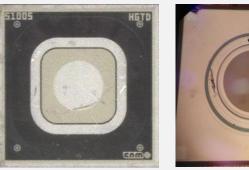



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754510

HGTD requirements

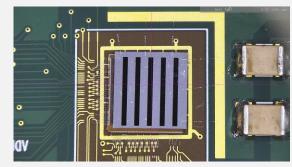
- Detector quite constrained by the space available and the harsh environment
- Time resolution better than 30 ps per track (50 ps per hit in a 2 layer geometry)
 - Recovers electron ID, track & jet reconstruction and b-tagging
- Low Gain Avalanche Detectors (LGAD) technology has been chosen
 - $\,\circ\,$ It provides an internal gain good enough while providing a large S/N ratio
- Design optimized for <10% occupancy



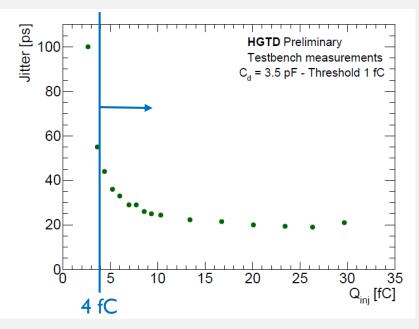


Detection technology: LGAD

- Low Gain Avalanche Detectors (LGADs) originally developed by CNM
 - o n-p silicon planar detector + multiplication layer that amplifies the signal
 - High E field
 - Moderate internal gain (10-50)
 - $\,\circ\,$ Typical rise time 0.5 ns
 - Excellent time resolution <30 ps before irradiation
- R&D programme to deliver thin sensors to provide the required time resolution (30 ps per track), fine segmentation, radiation hardness
 - New doping materials, substrates and new geometries
 - Prototypes tested from CNM, HPK, BNL, FBK



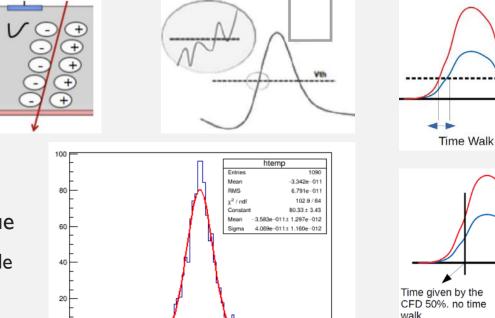
CNM LGAD for HGTD


HPK LGAD for HGTD

Readout electronics: ALTIROC ASIC

- ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)
 - Minimize noise and power consumption
 - Provide Time Of Arrival (TOA) and Time Over Threshold (TOT) measurements
 - Target time resolution <25 ps
 - Developed in various phases
 - ALTIROC0: single-pixel analog readout (pre-amplifier + discriminator)
 - Test bench measurements satisfactory
 - Beam tests \rightarrow see next slides
 - ALTIROCI: full single-pixel analog readout (analog + digital) in 5×5 arrays
 - Test bench measurements on-going
 - Irradiation campaigns and beam tests in Q1 2019
 - ALTIROC2: final 15×15 version
 - Submission expected end of 2019

$5{\times}5$ HPK LGAD bumb-bonded to ALTIROC1_v2


Contributions to timing

• Time resolution:

-

- Landau term <25 ps
 - Reduce for thin sensors: 35-50 μ m
- $\,\circ\,$ Jitter term <15 ps and time walk term <10 ps
 - Low noise and fast signals
- $\,\circ\,$ Digitization granularity ~5 ps
- $\,\circ\,$ Clock distribution <15 ps
- Time walk corrections on beam test data using the Constant Fraction Discriminator (CFD) technique
 - Considering the time at a fraction of 50% of the amplitude (typical fraction is 20%)

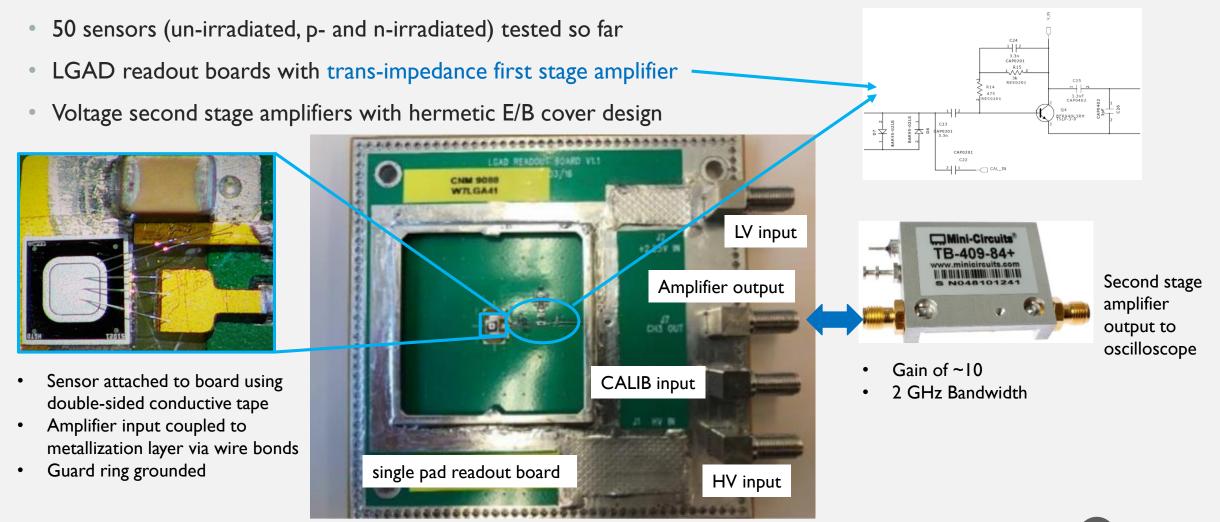
$$\sigma_{tot}^2 = \sigma_{Landau}^2 + \left(\frac{t_{rise}}{S/N}\right)^2 + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^2 + \left(\frac{\text{TDC}_{bin}}{\sqrt{12}}\right)^2 + \sigma_{clock}^2$$

0.1 0.2 0.3 CFDTime20[0]-CFDTime20[1]

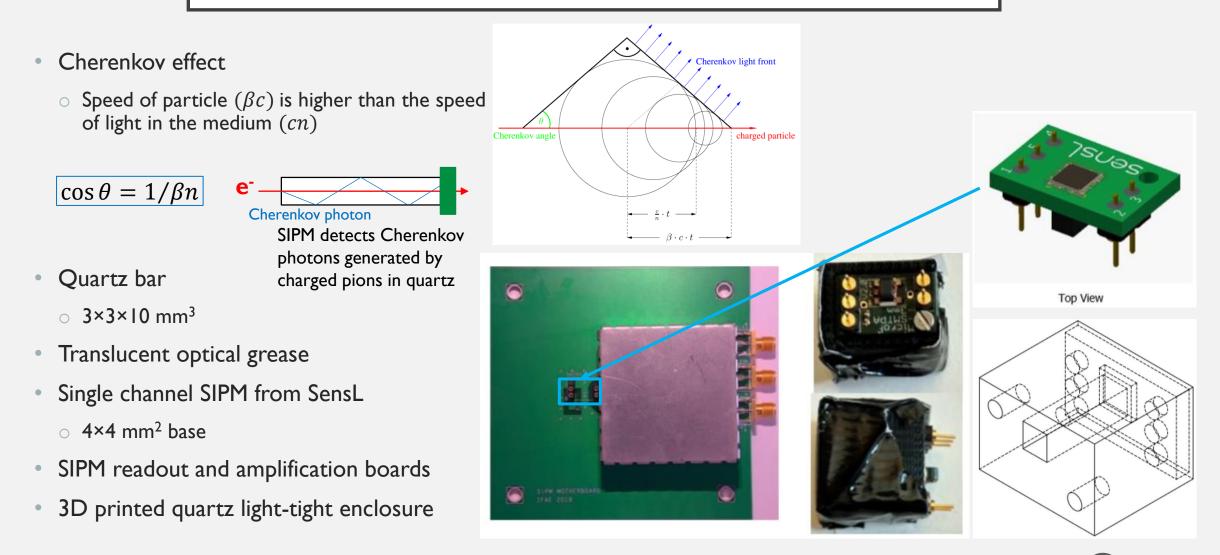
-0.3

-0.4

-0.2

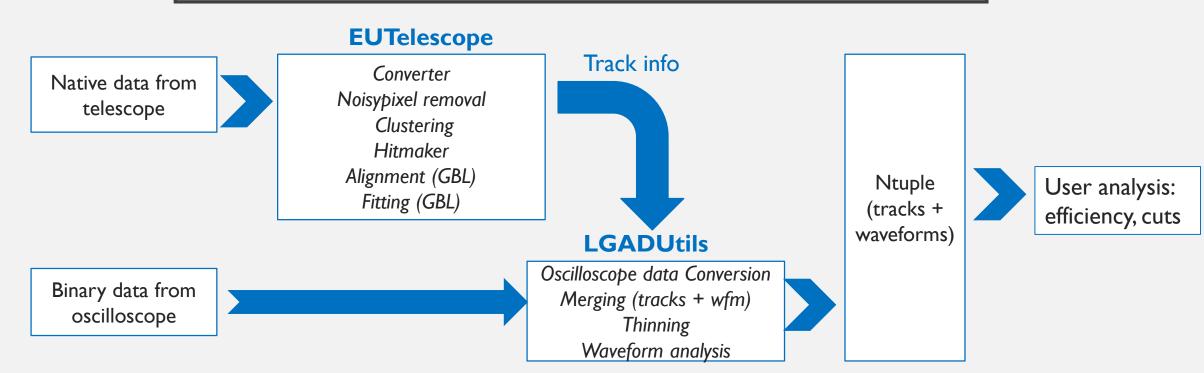

-0.1

Edge Threshold


Time

Discriminator

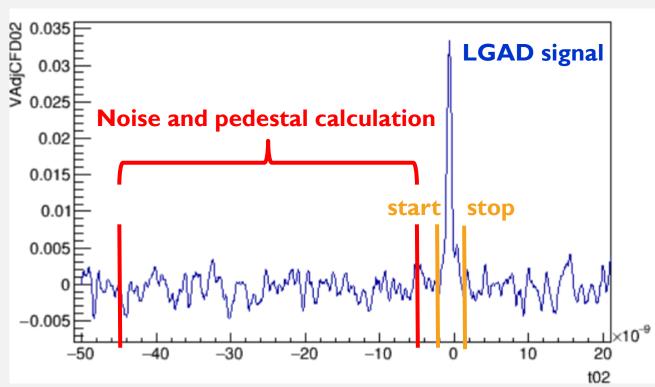
Assembly Sensor + Readout board



Development of a timing reference system

L. Castillo García

Data analysis tools


- Track reconstruction performed with EUTelescope software v01-19-02 using GBL algorithm
 - Requiring one hit in FE-I4 plane \rightarrow resulting in ~30% of total events with an average FE-I4 efficiency of 99.6%
- Waveform processing performed with LGADUtils framework vI.0 (C++ based) developed at IFAE by V. Gkougkousis (<u>https://indico.cern.ch/event/782573/#preview:2889703</u>)
 - Match event information between telescope and oscilloscope discarding events without FE-I4 hits

L. Castillo García

LGADUtils framework

• Steps:

- Conversion oscilloscope binary data to Root ntuple with raw waveform information
- Merging with track ntuple from EUTelescope
- Waveform analysis
 - Determination of pulse polarity, signal start and stop, determine if the pulse is noise or signal
 - Calculate noise level and pedestal using Gaussian fit, pedestal subtraction, re-calculation of start and stop of the signal
 - Compute charge, rise time, time at different CFD fractions, ...
- User analysis
 - Efficiency
 - Timing

