The evolution of Drift Chambers at e⁺e⁻ Colliders

(lessons learnt from a ≥40-years long experience)

Grancagno

NEN - Lecce

INSTR2020

BINP, Novosibirsk

INSTR20: Instrumentation for Colliding Beam Physics Budker Institute of Nuclear Physics, Novosibirsk, Russia 24 - 28 February, 2020

Outline of the talk

Performance evolution

- Momentum Resolution
- dE/dx, dN/dx and PId
- Mechanical Structure (X₀)
- FE and RO Electronics → NOT NOW

•••

•••

**

•••

Only Cylindrical Drift Chambers

- No Planar Drift Chambers
- No Time Projection Chambers
- No Time Expansion Chambers
- No Radial Drift Chambers: radial wires – H1-forward/HERA radial drift – ASTERIX/CERN
- No Straw Tube Cyl. Chambers (GlueX, PANDA)

Only e⁺e⁻ colliders

- No fixed target configurations (MEG2)
- No ep and pp colliders (AFS, CDF-CTC/COT)

Layout Evolution

- From single sense wire cell, to multiple sense wires and jet cell configurations - and back to single sense wire cell
- Axial-stereo and full stereo layer configuration (KLOE, 4th-Concept, MEG2, IDEA)

Gas mixture Evolution

- From Argon to Helium based gas
- Mechanical Structure and Wires Evolution
- Read-out: from first clusters timing to Cluster Counting and Cluster Timing

Trackers at e⁺e⁻ Colliders

past

ODEAD	MARK2	Drift Chamber		
SPEAR	MARK3	Drift Chamber		
DODIS	PLUTO	MWPC		
DORIS	ARGUS	Drift Chamber		
CESR	CLEO1,2,3	Drift Chamber		
	CMD-2	Drift Chamber		
VEPP2/4M	KEDR	Drift Chamber		
	NSD	Drift Chamber		
	CELLO	MWPC + Drift Ch.		
	JADE	Drift Chamber		
PETRA	PLUTO	MWPC		
	MARK-J	TEC + Drift Ch.		
	TASSO	MWPC + Drift Ch.		
	AMY	Drift Chamber		
TRISTAN	VENUS	Drift Chamber		
	TOPAZ	TPC		

1	MARK2	Drift Chamber
	PEP-4	TPC
PEP	МАС	Drift Chamber
	HRS	Drift Chamber
	DELCO	MWPC
BEPC	BES1,2	Drift Chamber
	ALEPH	TPC
	DELPHI	TPC
LEP	L3	Si + TEC
	OPAL	Drift Chamber
81.0	MARK2	Drift Chamber
310	SLD	Drift Chamber
DAPHNE	KLOE	Drift Chamber
PEP2	BaBar	Drift Chamber
KEKB	Belle	Drift Chamber

present

VEPP2000	CMD-3	Drift Chamber
VEPP4	KEDR	Drift Chamber
BEPC2	BES3	Drift Chamber
S.KEKB	Belle2	Drift Chamber

future

	ILD	TPC		
IL C	SiD	ε	Si	
CLIC	CLIC	Si		
FCC	CLD	Si		
FCC-ee	IDEA	Drift Chamber		
CEDC	Baseline	TPC	Si	
CEPC	IDEA	Drift Chamber		
SCTF	BINP	Drift Chamber		
STCF	HIEPA	Drift Chamber		

F. Grancagnolo - DC at ee Colliders

MARK II at SPEAR (1978) where it all began ...

A Large Cylindrical Drift Chamber for the Mark II Detector at SPEAR - Davies-White, W.A. et al. Nucl.Instrum.Meth. 160 (1979) 227

0.41 Tesla B-field 16 layers 6 axial + 10 stereo $(\pm 3^{\circ})$ 3204 drift cells (3:1) 22,000 wires $50\% \text{ Ar} - 50\% \text{ C}_2 \text{H}_6$ 2% X₀ radial - 20% X₀ e.p.

F. Grancagnolo - DC at ee Colliders

Single sense wire "open" cells 3:1

F. Grancagnolo - DC at ee Colliders

Single sense wire "open" cells 3:1 Mechanics

	MARK II SPEAR (1978)	CLEO CESR (1979)	TASSO PETRA (1980)	CELLO PETRA (1980)	HRS PEP (1980)	VENUS TRISTAN (1985)
Inner Radius [mm]	370	172	320	170	152	250
Outer Radius [mm]	1450	950	1280	700	1100	1260
Length [mm]	2700	1930	3450	2200	2540	3000
Axial layers	6	9	9	7	7	20
Stereo layers	10	8	6	0	21 ²¹ 8	9
Stereo angles [mrad]	±52	±52	±70	heel • •	±60	±60
Number of sense wires	3204	5304	2340	1312	2448	7104
Total number of wires	13,000	22,000	9,000	5,200	10,000	28,000
sense wires [µm]	40 Cu-Be(Ag)	20 W(Au)	30 W(Au)	20 W(Au)	37 W(Au)	30 W-Re(Au)
field wires [µm]	150 Cu-Be(Ag)	115 Cu-Be(Ag)	120 Mo(Au)	50-100 Cu-Be	127 Cu-Be(Au)	125 Cu-Be(Au)
Inner cylinder [mm/X ₀]	3.2 Lexan / 0.9%		5 fiberglass/ 3%		1 Be / 0.3%	1 C-f / 0.5%
Outer cylinder [mm/X ₀]	6.25 AI / 7%		6.0 AI / 7%		0.6 AI / 0.7%	5 C-f / 2.4%
End-plates [mm/X₀]	6.35 Al (cone) 3.2 Al + / 20%		35 AI /39%		9.5 Al (cone) 15.9 Al / 18%	21 AI / 24%

Single sense wire "open" cells 3:1 Performance

	MARK II SPEAR (1978)	CLEO CESR (1979)	TASSO PETRA (1980)	CELLO PETRA (1980)	HRS PEP (1980)	VENUS TRISTAN (1985)
B-field [T]	0.4	1.0	0.5	1.3	1.6	0.75
Cell Size [mm ²]	(9÷18)×12	11.3×10	16×12	15×18	17×10 ÷ 25×12	19×17
Gas Mixture	50 Ar / 50 C ₂ H ₆	50 Ar / 50 C ₂ H ₆	90 Ar / 10 CH ₄	90 Ar / 10 CH ₄	89 Ar / 10 CO ₂ / 1 CH ₄	50 Ar / 50 C ₂ H ₆
Spatial Resolution [µm]	150-200	250	220	170	200	150
Momentum Resolution	0.010p / 0.0145	0.012p / 0.007	0.020p / ?	0.029p / ?	0.005p / 0.003	0.0088p / 0.0012
Δp [MeV/c] at 1 GeV/c	17.6	13.9	>20.0	>30.0	5.8	14.9
dE/dx	<i>II</i>	6.5%	n		TOF + Cer.	JK // 1
	¹⁴ 비행 - 1916년 1월 - 1917년 1월 - 1917					¥.

From "open" to "closed" cells

SENSE WIREPOTENTIAL WIRE

6:1

ARGUS

DORIS

1982

A square-shape, closed cell implies more uniform and t-to-d relations less dependent from the track angle

A larger ratio of field to sense wires allows for thinner field wires and, therefore, for less multiple scattering contribution from the wires to the momentum measurement.

Single sense wire "closed" cells Mechanics

	MAC PEP (1980)	ARGUS DORIS (1982)	DM2 DCI (1982)	AMY TRISTAN (1984)	CLEO2 CESR (1984)
Inner Radius [mm]	120	150	325	148	175
Outer Radius [mm]	455	860	871	655	945
Length [mm]	1890	2000	2400	1800	1890
Axial layers	4	18	5	25	40
Stereo layers	6	18	8	15	11
Stereo angles [mrad]	±50	±40÷80	±52	±79	±52
Number of sense wires	883	5940	2080	9048	12240
Total number of wires	6,500	31,000	17,000	32,000	49,000
sense wires [µm]	20 W(Au)	20 W-Re(Au)	20 W-Re(Au)	20 W(Au)	20 W(Au)
field wires [µm]	200 Cu-Be	120-200 Al(Au)	120-200 Al(Au)	160 Al(Au)	110 Al/Cu-Be(Au)
Inner cylinder [mm/X ₀]	? / 1.6%	3.3 C-f / 1.5%			0.75 C-f+1 AI / 1.5%
Outer cylinder [mm/X ₀]		6 AI / 6.7%	S L HIM		6.35 HC+1.6 Al/ 3%
End-plates [mm/X ₀]	19 SS / 110%	30 AI / 34%			31.7 Al / 36%

Single sense wire "closed" cells Performance

	MAC PEP (1980)	ARGUS DORIS (1982)	DM2 DCI (1982)	AMY TRISTAN (1984)	CLEO2 CESR (1984)
B-field [T]	0.57	0.8	0.5	3.0	1.5
Cell Size [mm ²]	(15÷23.5)×10	18×18.8	24x40	10×12	14×14
Gas Mixture	90 Ar / 10 CH ₄	97 C ₃ H ₆ / 3 C ₃ H ₆ O ₂	50 Ar / 50 C ₂ H ₆	50 Ne / 50 C ₂ H ₆	50 Ar / 50 C ₂ H ₆
Spatial Resolution [µm]	180	150	180	200	180
Momentum Resolution	0.052p / ?	0.009p / 0.010	0.014p / 0.014	0.0070p / ?	0.0026p / 0.0057
Δp [MeV/c] at 1 GeV/c	>52	13.5	19.8	>10	6.3
dE/dx		5.0%	TOF + Cer.	//	6.0%

Lesson #1 - from "open" to "closed" cell

- closed cells limit the very long tails in the drift time distribution
- closed cells make the time-to-distance relations less dependent from the track angle
- square cells make the time-to-distance relations more isotropic
- small drift distance limits drift asymmetries due to Lorenz angle

... but

- portions of active volume not sampled between the cylindrical envelope of axial wires and the hyperboloid envelope of stereo wires
- small ratio of the number of field wires per sense wire (3:1) forces the use of thick field wires with consequences on multiple scattering contribution to momentum resolution and total load on end-plates
- some problems with left-right ambiguity and close tracks separation

MARK3 at SPEAR – JADE at PETRA

F. Grancagnolo and A. Seiden, Large Drift Chambers with a Multi-Wire Cell Design, SCIPP 81/5

J. Heintze, Drift chambers and recent developments, NIM 156 (1978) 227

F. Grancagnolo - DC at ee Colliders

Feb. 25, 2020

12

Multi-wire and Jet-like cells

F. Grancagnolo - DC at ee Colliders

Feb. 25, 2020

13

More Jet-like cells

F. Grancagnolo - DC at ee Colliders

Multi-wire and Jet-like cells Mechanics

	MARK3 SPEAR (1980)	JADE PETRA (1980)	CMD-2 VEPP-2M (1985)	MARK2 PEP/SLC (1985)	SLD SLC (1988)	OPAL LEP (1988)	BES/BESII BEPC (1989)	KEDR VEPP-4M (1998)
Inner Radius [mm]	140	180	25	192	200	245	155	125
Outer Radius [mm]	1140	800	295	1519	1000	1850	1150	535
Length [mm]	2337	2400	440	2300	2000	4000	2200	1100
Axial layers	12+4×3	16×2	6+7+6	6×6	4×8	159×1	5×4	4×6
Stereo layers	2×3	0	O	6×6	6×8	0	5×4	3×6
Stereo angles [mrad]	±150	0		±66	±41	ing o sing		±52
Number of sense wires	2000	1536	512	5832	5300	3816	2808	1512
Total number of wires	6,240	3360	3,500	37,000	35,000	20,000	19,400	16,000
sense wires [µm]	20 W(Au)/57 SS	25 W-Re(Au)	25 Ni-Cr	30 W(Au)	25 W(Au)	25 W-Re	30 W	28 W(Au)
field wires [µm]	175 Cu-Be	125-175 Cu-Be	10-20 Ti(Cu)	178-305 Cu-Be(Au)	150 Al(Au)	125-175 Cu-Be	100-178-200 Cu- Be	70-150 Ti(Au)
Inner cylinder [mm/X ₀]	9.5 HC+mylar+Al /0.2%			2.0 Be / 0.6%	AI + HC	1.5 C-f / 0.7%		1.5 C-f / 0.7%
Outer cylinder [mm/X ₀]	6.25 Al / 7.0%			12.7 Al / 15.0%	AI + HC		84 1 ¹¹ 1	5.0 G10 / 3.0%
End-plates [mm/X₀]	25.4 / 15% - 7.62 / 8.5%	25.4 G10 /15.0%	10.0 G10 / 6.0%	51.0 AI / 57.0%	5.0 Al / 5.7%	32 G10 / 19.2% / 28 Al /33.0%		20 G10 / 12.0%

Multi-wire and Jet-like cells Performance

	MARK3 SPEAR (1980)	JADE PETRA (1980)	CMD-2 VEPP2M (1985)	MARK2 PEP/SLC (1985)	SLD SLC (1988)	OPAL LEP (1988)	BES/BESII BEPC (1989)	KEDR VEPP4M 1998)
B-field [T]	0.4	0.45	2.0	0.4	0.6	0.44	0.4	0.6 (1.8)
Cell Size [mm ²]	(18÷30)×10	(10÷30)×10	(16÷28)×10	33×8.33	60×50	(30÷250)×10	30×10	30×4.5
Gas Mixture	HRS gas	88.7 Ar / 8.5 CH ₄ / 2.8 iC ₄ H ₁₀	80 Ar / 20 iC ₄ H ₁₀	HRS gas	21 Ar / 72 CO ₂ / 4 iC ₄ H ₁₀	88 Ar / 10 CH ₄ / 2 iC ₄ H ₁₀ at 4 bar	HRS gas	C ₂ H ₂ O (DME)
		Res States		如此而前指計				
Spatial Resolution [µm]	220	135-165	95	175	155	135	240	115
Momentum Resolution	0.015p / 0.015	0.022p / ?	?/?	0.0015p /0.014	0.010p / 0.005	0.00150p / 0.02	0.018p / 0.018	0.02p / 0.03
Δp [MeV/c] at 1 GeV/c	21	>22	50	14.1	11.1	20	25	36
				명방법원				
dE/dx	15.0%	6.0% - 8.5%	// // // // // // // // // // ////////	7.0%	6.4%	3.1% - 3.8%	8.5%	8.5%
				北京建筑		約4.1.4MP	- ""(1) ""我"	

Lesson #2 - from single to multi-wire

- left-right ambiguity solved at the cell level
- track finding facilitated by the definition of a point and a vector within a single cell
- double track resolution improved with suitable front-end electronics

... but

- very long drift times
- portions of active volume not sampled between the cylindrical envelope of axial wires and the hyperboloid envelope of stereo wires
- need for extra (thick) wires to limit cross-talk between adjacent sense wires and for extra wires at cell boundary to limit long drifts
- only limited stereo angles allowed because of its radial dependence for long jet-like cells

Momentum resolution in early chambers

 $(dp_t/p_t)^2 = [8\sqrt{5\sigma_{r\phi}}/(0.3BL^2\sqrt{N})]^2p_t^2 +$ + $[5.4 \times 10^{-2}/BL\sqrt{(L/X_0)}]^2$

> Despite the large variety of different parameters involved, **momentum resolution** (at p=1GeV/c) clusters around 1-2% for all chambers.

Initially, resolution dominated by the sagitta measurement error. With improved cell configurations, the dominant error became multiple scattering, claiming for a breakthrough in the gas mixture and in the wires.

Helium as Drift Chamber gas ...

- W. Zimmermann et al., Helium-propane as drift chamber gas, Nucl. Instrum. Meth. A243 (1986) 86
- F. Grancagnolo, A Helium Drift Chamber as the Central Tracker of a B-Factory, Proc. Workshop on Heavy Quarks Factory and Nuclear Physics Facility with Superconducting Linacs, Courmayeur, 1987, eds. E. De Sanctis, M. Greco, M. Piccolo and S. Tazzari (Atti di Coferenze, Società Italiana di Fisica, Bologna 1987) p. 599
- F. Grancagnolo, A Central Tracking Detector for a B-Factory, Nucl. Instrum. Meth. A277 (1989) 110

... and back to single sense wire cells

Single wire cells – He gas Mechanics

	BESIII BEPC2 (2008)	KLOE DAPHNE (1998)	CLEO3 CESR2 (1998)	BABAR PEP2 (1998)	BELLE KEKB (1998)	BELLE2 KEKB (2017)
Inner Radius [mm]	63	250	1 25 (10)	236	77	160
Outer Radius [mm]	810	1980	820	808	880	1130
Length [mm]	2400	3300	2500	2800	2400	2420
Axial layers	5×4	0	8×2	4×4	6×5	5×6
Stereo layers	6×4	12+46	8×4	6×4	5×4	4×6
Stereo angles [mrad]	±35÷50	±60÷150	±20÷30		±42÷74	±60÷80
Number of sense wires	7000	12582	9796	7104	8400	14,336
Total number of wires	29,000	52,000	40,000	25,000	35,000	60,000
sense wires [µm]	25 W-Re(Au)	25 W(Au)	20 W-Re(Au)	20 W-Re(Au)	30W(Au)	30 W(Au)
field wires [µm]	110 Al(Au)	80 Al(Ag)	110 Al(Au)	80-120 Al(Au)	126 AI	126 AI
Inner cylinder [mm/X ₀]	1.0 C-f / 0.45%	0.75 C-f + 0.2 Al / 0.55%	2.0 Roh + Al / 0.12%	1.0 Be / 0.28%	2.0 C-f / 1.1%	0.4 C-f / 0.22%
Outer cylinder [mm/X ₀]	11.0 C-f / 5.0%	3.0 C-f + HC / 2.5%		C-f + HC / 1.5%	5.0 C-f / 2.6%	5.0 C-f / 2.6%
End-plates [mm/X ₀]	25.0 AI / 28.0%	9.0 C-f / 4.7%	15.5 Al + / 17%	12/24 AI / 13.5%/27.0%	10.0 AI / 11.0%	10.0 AI / 11.0%

Single wire cells – He gas Performance

	BESIII BEPC2 (2008)	KLOE DAPHNE (1998)	CLEO3 CESR2 (1998)	BABAR PEP2 (1998)	BELLE KEKB (1998)	BELLE2 KEKB (2017)
B-field [T]	1.0	0.6	1.5	1.5	1.5	1.5
Cell Size [mm ²]	12×12 ÷ 16×16	20×21 + 30×31.5	14×14	12×18	8×15.5 + 10×17	87.5 + 15,25
Gas Mixture	60 He / 40 C ₂ H ₆	90 He / 10 iC ₄ H ₁₀	60 He / 40 C ₂ H ₆	80 He / 20 iC ₄ H ₁₀	50 He / 50 C ₂ H ₆	50 He / 50 C ₂ H ₆
Spatial Resolution [µm]	120	200	110	125	130	130
Momentum Resolution	0.0032p / 0.0037	0.0005 / 0.0026	0.0016p /0.0028	0.0015p / 0.0045	0.0019p / 0.0030	0.0011p / 0.0025
Δp [MeV/c] at 1 GeV/c	4.9	2.6	3.2	4.7	3.5	2.7
dE/dx	6%-7%	4.6%	5.0%	7.5%	6.9%	6.9%

Lesson #3 – small cells and He gas

- He radiation length 50× longer than Ar
- slower drift velocity implies smaller Lorenz angle for a given B-field
- He has a smaller cross section for low energy photons than Ar
- small size cells limit the electron diffusion contribution to spatial resolution
- small size cells provide high granularity (improving occupancy) and allow for a larger number of hits per track, improving spatial resolution

... but

- portions of active volume not sampled between the cylindrical envelope of axial wires and the hyperboloid envelope of stereo wires
- accumulation of trapped electrons and ions in a region of very low field
- Iongitudinal gain variation at boundaries between axial and stereo layers
- spatial resolution dominated by ionization statistics for short drift distances
- adding more quencher to compensate, mitigates the advantage of He

Momentum resolution after Helium

 $(dp_t/p_t)^2 = [8\sqrt{5\sigma_{r\phi}}/(0.3BL^2\sqrt{N})]^2p_t^2 + [5.4 \times 10^{-2}/BL\sqrt{(L/X_0)}]^2$

Momentum resolution \leq a few ×10⁻³

However, too large amounts of quencher mitigate the advantages of the long radiation length of Helium

"Full" stereo configuration: KLOE

A configuration with only perfectly nested alternating sign stereo layers (no axial layer) fills the gaps occurring in a mixed stereo-axial configuration, rendering the the chamber more isotropic and fully sampled, thus increasing the number of hits on a track for a given cell size.

F. Grancagnolo - DC at ee Colliders

In **KLOE**, this is achieved by having the field wires layer of the cell outer bound at a stereo angle of opposite sign w.r.t. the sense wire layer and to the field wires layer of the cell inner bound

24

The stereo configuration is obtained with constant stereo drop at the middle transverse plane. This, however, besides causing a small longitudinal variation of the cell aspect ratio, implies:

time to distance relations which depend on the track angle and on the cell periodicity in z.

Lesson #4 – full stereo configuration

- no gaps between axial and stereo layers which may trap ions and electrons in regions of very low electric field
- constant sense wire gain as a function of the longitudinal coordinate
- larger number of hits on a track for a given cell size
- maximizes the number of measurements of the longitudinal coordinate
- two stereo views enable 3D reconstruction in a natural way

... but

- open top cells cause a dependence of the time-to-distance relations from the track angle and from the cell longitudinal periodicity
- constant stereo drop (as in KLOE) changes the cell aspect ratio along z (radial cell size constant but azimuthal width increased at end-plates)

constant stereo angle generates cell distortions for large stereo angles
 F. Grancagnolo - DC at ee Colliders
 25
 Feb. 25, 2020

MEG2 approach at "full" stereo

see Tassielli, next talk

Constant transverse stereo angle projection α_k preserves the cell aspect ratio: "square" cells by construction: $w_k = h_k$ remain such at any z $[w_k(z=\pm L/2) = h_k(z=\pm L/2) = 1.035 w_k(z=0) = 1.035 h_k(z=0)$ for 100 mrad stereo angle and 2 m wire length] no β angle dependence - no Φ angle dependence in principle, one single t-to-d scalable for all layers

Layer assembly

This configuration requires more field wires per sense wire (5:1, as opposed to 3:1 in KLOE) allowing for thinner field wires, therefore, even less m.s. contribution and less load on the end plates.

Lesson #5 – summary

- the configuration offering the best performance in terms of momentum resolution is one with small, single sense wire closed cells, arranged in contiguous layers of opposite sign stereo angles, obtained with constant stereo angle transverse projection
- the gas mixture is based on helium with a small amount of quencher (90% He / 10% iC₄H₁₀, KLOE gas) which, besides low multiple scattering contribution, allows for the exploitation of the cluster timing technique, for improved spatial resolution, and of the cluster counting technique, for excellent particle identification
- suggested wire material is Ag coated Al, but lighter materials are under scrutiny (like metal coated carbon monofilaments)

IDEA DC and TraPId pt resolution

momentum resolution $(dp_t/p_t)^2 = (a \times p_t)^2 + b^2$

IDEA DC proposed for the IDEA detector at FCC-ee and CEPC

TraPld

TRAcking and Particle Identification Drift Chamber for SCTF at BINP

F. Grancagnolo - DC at ee Colliders

IDEA DC and TraPId dE/dx resolution

29

dE/dx

dN/dx

IDEA and TraPId end-plate X₀

30

please, have a look at **Poster #91** "New Concepts for Light Mechanical Structures of Cylindrical Drift Chambers"

Conclusions

- we have presented the evolution of momentum resolution for drift chambers at e⁺e⁻ colliders over the past 40 years
- we have briefly summarized the particle identification capabilities with dE/dx and the potentialities with cluster counting (dN/dx)
- we have briefly listed the impact of the drift chambers mechanical structure as passive material in front of the electromagnetic endcaps calorimeters and the relative improvements over the years
- we have not discussed about the front-end electronics evolution and the different techniques of data acquisition and processing of the wire signals.

Momentum and Angular Resolutions

https://doi.org/10.1016/j.nima.2018.08.078

An extension of the Gluckstern formulae for multiple scattering: Analytic expressions for track parameter resolution using optimum weights

ABSTRACT

Z. Drasal^{a,b}, W. Riegler^{b,*} ^a Charles University, Prague, Czech Republic ^b CERN EP, Geneva, Switzerland

ARTICLE INFO

Keywords: Tracking Multiple scattering Impact parameter resolution Momentum resolution Momentum, track angle and impact parameter resolution are key performance parameters that tracking detectors are optimised for. This report presents analytic expressions for the resolution of these parameters for equal and equidisant tracking layers. The expressions for the contribution from position resolution are based on the Gluckstern formulae and are well established. The expressions for the contribution from multiple scattering using optimum weights are discussed in detail.

Check for updates

$$\begin{split} \frac{\Delta p_T}{p_T}|_{res.} &= \frac{\sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{720 N^3}{(N-1)(N+1)(N+2)(N+3)}} \\ &\approx \frac{12 \, \sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{5}{N+5}} \\ \frac{\Delta p_T}{p_T}|_{m.s.} &= \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \, \text{GeV/c}}{0.3\beta \, B_0 L_0} \\ &\times \sqrt{\frac{d_{tot}}{X_0 \, \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \, \sin \theta}\right) \\ &\approx \frac{0.0136 \, \text{GeV/c}}{0.3\beta \, B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \, \sin \theta}} \end{split}$$

$$\begin{split} dd_{0}|_{re.} &= \frac{3\sigma_{rd}}{\sqrt{N-1)(N+1)(N+2N+2N+3)}} \times \\ &\sqrt{\left(N^{3}-\frac{N}{3}-\frac{2}{3}\right) + \frac{4(2N^{3}-N^{2}-N)r_{0}}{L_{0}^{2}} + \frac{4(2N^{3}-N^{2}-N)r_{0}^{2}}{L_{0}^{2}} + \frac{40N^{3}r_{0}^{2}}{L_{0}^{2}} + \frac{20N^{3}r_{0}^{2}}{L_{0}^{2}} \\ &\approx \frac{3\sigma_{rd}}{\sqrt{N+5}} \sqrt{1+\frac{8r_{0}}{L_{0}} + \frac{28r_{0}^{2}}{L_{0}^{2}} + \frac{40r_{0}^{2}}{L_{0}^{2}} + \frac{20r_{0}^{2}}{L_{0}^{2}}} \\ & dd_{0}|_{re.} &= \frac{r_{0}}{\rho_{PT}} f \left(\frac{A}{X_{0}\sin\theta}\right) \sqrt{\frac{N-3}{N-1} + \frac{N}{2L(N-1)} \left(\frac{r_{0}}{L_{0}}\right) + \frac{N^{2}}{L_{0}} + \frac{N^{2}}{L_{0}^{2}}} \\ & dd_{0}|_{re.} &= \frac{r_{0}}{\rho_{PT}} f \left(\frac{A}{X_{0}\sin\theta}\right) \sqrt{1 + \left(\frac{r_{0}}{L_{0}}\right) + \left(\frac{r_{0}}{L_{0}}\right)^{2}} & N_{ep} = 2 + \frac{L_{0}}{r_{0}}} \\ &\approx \frac{00136GeV/c}{\rho_{PT}} r_{0} \sqrt{\frac{M}{M_{0}\sin\theta}} \sqrt{1 + \left(\frac{r_{0}}{L_{0}}\right) + \left(\frac{r_{0}}{L_{0}}\right)^{2}} \\ &\approx \frac{2\sigma_{r}}{\sqrt{(N+1)(N+2)}} \sqrt{\left(N + \frac{1}{2}\right) + \frac{3Nr_{0}}{L_{0}} + \frac{3Nr_{0}^{2}}{L_{0}^{2}}} \\ &\approx \frac{2\sigma_{0}}{\sqrt{N+3}} \sqrt{1 + \frac{3r_{0}}{4r_{0}} + \frac{3r_{0}^{2}}{L_{0}^{2}}} \\ &\Delta z_{0}|_{re.} &= \frac{r_{0}}{\sin\theta} \frac{1}{\rho_{PT}} f \left(\frac{d}{X_{0}\sin\theta}\right) \\ &\approx \frac{0.0136GeV/c}{\delta\rho_{T}} \frac{r_{0}}{r_{0}} \sqrt{\frac{d}{X_{0}\sin\theta}} \\ &\Delta z_{0}|_{re.} &= \frac{r_{0}}{\sin\theta} \frac{1}{\rho_{PT}} f \left(\frac{d}{X_{0}} \sin\theta}\right) \end{split}$$

$$\begin{split} \Delta \theta |_{res.} &= \frac{\sigma_z \, \sin^2 \theta}{L_0} \sqrt{\frac{12N}{(N+1)(N+2)}} \\ &\approx \frac{2 \, \sigma_z \, \sin^2 \theta}{L_0} \sqrt{\frac{3}{N+3}} \\ \Delta \theta |_{m.s.} &= \frac{\sin \theta}{\beta \, p_T} \, f\left(\frac{d}{X_0 \, \sin \theta}\right) \\ &\approx \frac{0.0136 \, \text{GeV/c} \, \sin \theta}{\beta \, p_T} \, \sqrt{\frac{d}{X_0 \, \sin \theta}} \end{split}$$

dE/dx and dN_{cl}/dx Resolutions

$$\frac{\sigma_{dE/dx}}{dE/dx} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track} [m] \cdot P[atm]\right)^{-0.32}$$

A. H. Walenta et al., *Measurement of the ionization loss in the region of relativistic rise for noble and molecular gases*, Nucl. Instr. and Meth. 161 (1979) 45-58.

statistical fluctuations of gas gain (< 1%)

- drift distance dependence
- z-dependence along the wire
- wire sagging ($\Delta w/w < 3 \times 10^{-3}$)
- statistical fluctuation of energy loss (Landau)
- attachment (gas quality)
- avalanche saturation (angle dependence)
- ✤ rate effects
- double track separation
- ✤ wire to wire calibration
 - F. Grancagnolo DC at ee Colliders

 $\frac{\sigma_{dN_{cl}/dx}}{\left(dN_{cl}/dx\right)} = \left(\varepsilon_{counting} \cdot \delta_{cluster} \cdot L_{track}\right)^{-0.5}$

G. Cataldi, F. Grancagnolo and S. Spagnolo, *Cluster counting in helium based gas mixtures*, Nucl. Instr. and Meth. A386 (1997) 458-469.

Poisson statistics

- ✤ δ_{cluster} = 12.5 cluster/cm in (90%He-10%iC₄H₁₀)
- outperforms dE/dx by a factor ×2
- ♦ even at very low counting efficiency (ε_{counting} ≈ 20%) better than dE/dx
- insensitive to
 - gas gain variations
 - lower dependence on gas composition
 - slighter dependence on avalanche saturation

no wire to wire calibration needed

Square versus Hexagonal cells

B = 1 T 75%He-25%iC₄H₁₀

small deviation of equi-time from perfect polygonal shape: 3.3% vs. 3.1%
field to sense wire ratio: 5 to 1 vs. 2 to 1 for equal gain

 more field wires implies more isotropic E-field and smaller distortions due to the E×B effects thinner field wires: 40 µm vs. 100-125 µm

- less multiple scattering
- less load on end plates
- smaller gaps in B-field
- larger time-to-distance distortions
 - longer tails (> 500 ns for 1 cm cell) in signal pulse (hit pattern, dE/dx, pile up)
- easier implementation of a full stereo configuration

F. Grancagnolo - DC at ee Colliders

cm.

field foil versus field wires

very effective solution to confine broken wires within a limited region very uniform field at the cell boundary larger cathode surface allows for running at higher gain no such a radial symmetry with single sense wire cells azimuthal symmetry for axial wire layers but not for stereo layers Moreover: 6.35 µm Mylar + 2×0.035 µm Au $= 2.4 \times 10^{-4} X_{o}$ 40 µm diameter Au plated Al (4/cm) $= 1.0 \times 10^{-5} X_{0}$

Load on end plates: 560 g/cm of foil, 80 g for 4 wires/cm

F. Grancagnolo - DC at ee Colliders