INSTR20 Instrumentation for Colliding Beam Physics

Design, Performance and Perspective of NA62-RICH at CERN

Matteo Turisini INFN Firenze

on behalf of NA62-Collaboration

matteo.turisini@fi.infn.it

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia, 2020, February 24-28

About NA62 experiment

NA62 is a fixed target experiment located in the North Area of CERN

dedicated to the study of charged kaon decays

in particular the <u>very rare</u> decay $K^+ \rightarrow \pi^+ \nu \nu$

 $2016 \rightarrow 2018$ Physics run 2015 RICH commissioned 2009 NA62 approved

Beam characteristics

- 400 GeV/c protons from SPS on beryllium target produce secondary hadron beam
- 3.5 seconds spill
- 75 GeV/c momentum positive particle selected (1% rms)
- 750 MHz nominal rate
- 6% are kaons

Experimental strategy for $K^+ \rightarrow \pi^+ \nu \nu$ ⁰²

signal probability is 10 order of magnitude smaller than background!

Background rejection

$$\begin{array}{l} K^+ \rightarrow \mu^+ \nu \\ K^+ \rightarrow \pi^+ \pi^0 \end{array}$$

TRIGGER

Level 0 : RICH, CHOD, MUV3, <20 GeV in Lkr Level 1 : PHOTON, Kinematic CONTROL: minimum bias and downscale

★ NA62-RICH was built to provide an extra factor 100 to $\pi - \mu$ separation on top of kinematics and calorimetry

★ With sub-ns precision it was used as random veto free fast hodoscope for $K - \pi$ matching

★ Being fast and simple the RICH was used as trigger detector for NA62

Light production and focusing

Radiator: Neon gas at 1 atm $(n-1) = 62.8 \times 10^{-6}$ at 300 nm

Optics: mirror mosaic

- Aluminized glass, MgF₂ coating
- Reflectivity 90% in 195 650 nm
- Alignment precision 1 mm (30 µrad)

Alignment method Single track extrapolation from spectrometer and comparison with fitted ring center. Adjust mirror orientation and iterate

[Mirror alignment Paper, 2018 JINST 13 P07012]

Light detection and digitization

2 x 976 (1952) Photomultipliers

18 mm pitch 185-650 nm QE 20% @ peak 280 ps FWHM Custom voltage divider

Possible replacement R9880U with QE 30% @ peak under study

Custom Frontend

based on 8 channel NINO ASIC fast discriminator amplifier jitter < 25 ps @ 200 fC LVDS output analog sum output for trigger

[NA62 Internal note, 2020, 20-01

R7400U-03

A picture from experimental room

Trigger and readout

TEL62 boardcommon NA62 TDAQ module, 512 channels, 2GB DDR2, max L0latency 1 ms, backpressure handling,

Basic performance

Time performance

2017 data

Intrinsic time resolution

For each ring two groups of hits are formed, randomly assigned Calculate time average of each group

Plot the difference

RICH time resolution = 0.07 ns

PID performance

2017 data

The two signal candidates in 2017 data 11

Cherenkov ring for the two events observed in the signal region

[Ruggiero.G, Kaon 2019]

Monitoring tools

Optimize single photoelectron response using thermal noise

Conclusion

NA62 took $K^+ \rightarrow \pi^+ \nu \nu$ data in 2016-2018 with RICH as crucial sub-detector

- providing additional muon rejection to calorimetry based PID
- participating in L0 trigger with hit multiplicity algorithm

INSTR20

• giving to the experiment a 70 ps time reference for charged particles

NA62-RICH has been a good test environment for GPU based online selection In particular to reconstruct complex quantities at lowest trigger level L0

NA62-RICH, completed with monitoring tools, is ready for data taking restart in 2021 with upgraded L0TP and GPU

- Matteo Turisini - NA62 RICH

INSTR20 Instrumentation for Colliding Beam Physics

Design, Performance and Perspective of NA62-RICH at CERN

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia, 2020, February 24-28