New challenges for distributed computing at the CMS experiment

Natascha Krammer on behalf of the CMS Collaboration

Instr20 Conference - Natascha Krammer

24th February 2020

Outline

AUSTRIAN CADEMY OI SCIENCES

- Present and future computing needs in
 - $\circ~$ LHC Run-3 and HL-LHC

How to full-fill the computing needs

Grid Comp., Cloud Comp., High-Performance Computing (HPC)

- Modern state-of-the-art methods in physics analysis and data science
 - o Big-Data, Machine Learning Deep Learning

- WLCG (Worldwide LHC Computing Grid) landscape
 - Over 170 computing centers in 42 countries
 - Computing power in 2020
 - CPUs: 6.500.000 of today's fastest cores (6.5 million)
 - Storage: Disk: 575 PB, Tape: 800 PB

LHC experiment resources

AUSTRIAN ACADEMY OF SCIENCES

24th February 2020

20. Nov. 2019

Instr20 Conference - Natascha Krammer

4

Run-3 probably manageable overall, but constant budget growth until Run-4 is essential for HL-LHC

CMS

FPH

- 15-20% increase in technology maybe an optimistic assumption – many indications that flat budget is much worse (~ 10%)
- Short extension of LS2 does mitigate resource shortfalls

24th February 2020

Modeling of the CMS HL-LHC computing system David Lange CHEP2019 04. Nov. 2019

HL-LHC data analysis

CMS

FPHY

- To extract physics results requires to handle/analyze a lot more data!
- Tests and the usage of new technologies are ongoing
 - Big Data technology (new toolkits and systems to support analysis of datasets)
 - Cloud Computing and High Performance Computing (HPC)
- Educates our community to use industry-based technologies
- Use tools developed in larger communities reaching outside of our field

HL-LHC computing needs

AUSTRIAN CADEMY OF SCIENCES

Frédéric Hemmer ,CERN School of Computing, Oct. 2018

- Simple model based on today's computing models, but with operating parameters (pileup, trigger rates, etc.)
- Technology at $\sim 20\%$ /year will bring x 6-10 in 10-11 years
- At least x 10 above is realistic to expect from technology with reasonable constant cost \succ

24th February 2020

HEP computing model for HL-LHC

AUSTRIAN ACADEMY OF SCIENCES

Frédéric Hemmer, CERN School of Computing, Aug. 2016

Classes of Resource Providers

Helix Nebula Science Cloud

AUSTRIAN ACADEMY OF SCIENCES

Helix Nebula Science Cloud

CMS

FPHY

- European hybrid cloud platform that will support high-performance, data-intensive scientific computing
- sponsored by 10 of Europe's leading public research organizations and cofunded by the European Commission (H2020). Procurers: CERN, CNRS, DESY, EMBL-EBI, ESRF, IFAE, INFN, KIT, SURFSara, STFC
- for end-users from many research communities: High-energy physics, astronomy, life sciences,...
- Funds, manpower, use-cases with applications & data, in-house IT resources

Ian Bird, Helge Meinhard, CWP Workshop, Jan. 2017

HEPCloud @ Fermilab

- routes jobs to local or remote computing resources accessing the various resources
- expands the resources available to include HPC centers and commercial cloud resources
- routes the jobs to the best resources available based on the requirements

Usage of opportunistic CPU resources @ CMS experiment

- Use them at the smallest cost possible for computing operations
- BEER (running jobs parasitically on resources for CERN IT services, EOS):
 - 1.7k additional cores in 2020
- HPCs: lots of effort for using such machines
 - CMS is doing its best to profit from HPCs, not possible to replace WLCG resources with HPCs

HPCs, CMS multithreaded jobs through HEPCloud

- T3_US_NERSC - T3_US_PSC - T3_US_SDSC

Offline Software and Computing for Run3, M. Klute, D. Piparo, CMS Week Bangkok, 18. Dec. 2019

24th February 2020

Motivation for use of HPC resources @ CMS experiment

- CMS aims towards increasing the usage of HPC resources in the mid to long term future (Run-3 & HL-LHC)
- Growing funding in HPC infrastructures looking onwards to deploying Exascale machines (one exaFLOPS, a billion billion calculations per second)
- Countries/Funding agencies pushing HEP communities to make use of these resources
- Interest in HEP experiments to access best technologies available, usually employed at HPC sites
- HPC future contribution regarded as integral part of WLCG strategy towards HL-LHC

CMS Strategy for HPC resource exploitation, Antonio Perez-Calero Yzquierdo, CHEP2019, 04. Nov. 2019

Analytics and Monitoring Infrastructure @ CERN (Aka Monit)

- common big data solutions based on open-source, scalable, and no-SQL tools, such as Hadoop, InfluxDB, and ElasticSearch, available through CERN IT infrastructure
- o monitoring and accounting applications using visualisation tools Kibana and Graphana
- alarms can be raised when anomalous conditions in the monitoring data are met, and the relevant teams are automatically notified
- data sources from different subsystems are used to build complex workflows and predictive analytics (data popularity, smart caching, transfer latency) and for performance studies
- exploiting scalable solutions based on Spark (unified analytics engine for large-scale data processing); SWAN (Service for Web based ANalysis) platform to perform interactive data analysis in the cloud

Machine Learning (ML) in HEP

- HEP (High Energy Physics) has a long history of using Machine Learning (since 2013)
- mostly used for signal vs. background classification
 - with Neural Networks and Boosted Decision Trees
 - o train on signal and background Monte-Carlo
 - o learn the separation between signal and background distribution
 - o apply on test sample
 - o apply on data
- used in many other fields
 - o tools for object reconstruction
 - tagging (deep jet tagging)
 - fast simulation (calorimeter showers, TPC cluster)

Particle Classifier Using Neural Networks

R&D to improve the quality of filtering system

- Develop a "Deep Learning classifier" to be used by the filtering system
- Goal: Identify events of interest for physics and reduce false
 positives
 - False positives have a cost wasted storage, bandwidth and computing

Big Data Tools and Pipelines for Machine Learning in HEP, Luca Canali, 04. Dec. 2019

24th February 2020

Instr20 Conference - Natascha Krammer

Summary

Challenges on HL-LHC computing

CMS

FPHY

- HEP computing much more capacity is needed Ο
- New computing models and more efficient software have to be developed
- Additional resources are needed Cloud Computing, High-Performance Computing
 - Cloud resources are much more \bigcirc competitive in terms of cost than in the past
 - Increasing usage of HPC resources in the mid to long term future; 0 usage of best technologies available
 - An important resource as supplement to the existing resources Ο
- Modern tools and methods are used Big-Data, Machine Learning - Deep Learning
 - Used in many ranges 0 of application in HEP (monitoring, analysis optimization, particles classification)

BIG DATA