The Barrel and Endcap Disc DIRC at PANDA

Carsten Schwarz, **5**

for the PANDA Cherenkov group

GSI Darmstadt
University of Erlangen
University of Giessen
University of Mainz
BINP Novosibirsk

- The PANDA detector
- The DIRC counters
- Barrel DIRC
 - Endcap Disc DIRC

Antiproton production at FAIR

PANDA experiment

→ Monday: Talk of Anastasios Belias

Muon Range System Targetsystem Solenoid **Barrel TOF** p Beampipe 12m Muon Detection **EM Calorimeter**

GEM Detectors

Forward Tracking System

Straw Tube

Tracker

Micro Vertex Detector

→ Monday: Talk of Sergey Kononov

PANDA physics program

Charmonium and open charm spectroscopy

Search for charmed hybrids and glueballs

Modification of charmed mesons in nuclear matter

Hypernuclei

Shashlyk Calorimeter

Nucleon structure

PANDA DIRC counters 7 GeV/c p p [GeV/c] 0.9 Example of 0.8 kaon phase space 0.7 140° 0.6 0.5 0.4 0.3 0.2 **Beam** 0.1 0.0 p 50 100 150 θ [°] **Particle** Focusing Track Solid **Optics** Radiator Detector Surface **Endcap disc DIRC** Mirror Goal: 3 s.d. π/K separation **Barrel DIRC** Cherenkov Photon up to 4 GeV/c Trajectories Goal: 3 s.d. π/K separation up to 3.5 GeV/c Magnitude of photon angles in radiator preserved

Barrel DIRC Design:

based on BABAR DIRC and SuperB FDIRC with key improvements

- Barrel radius ~48 cm;expansion volume depth: 30 cm.
- 48 narrow radiator bars, synthetic fused silica
 17 mm (T) x 53 mm (W) x 2400 mm (L).
- Compact photon detector:
 30 cm fused silica expansion volume
 8192 channels of MCP-PMTs
 in ~1T B field
- Focusing optics: spherical lens system
- Fast photon detection: fast TDC plus TOT electronics,
 - \rightarrow 100-200 ps timing

Expected performance

Time imaging reconstruction

Design meets and exceeds PID requirements

Optical components

Bars from AOS/Okamoto, InSync, Nikon, Zeiss, Zygo; Heraeus, Lytkarino LZOS, Schott Lithotec.

Plates from InSync, Nikon

Photon detector

Requirements:

- few mm spatial resolution
- ~100 ps timing resolution

Sector:

8 MCP-PMT, each 8 x 8 pixels (total 8 k readout channels) with pixel size 6 x 6 mm² work in 1T magnetic field survive 10 years of PANDA (aging)

A.Lehmann, DIRC2019

Readout chain

DiRICH
Collaboration of
PANDA, CBM, HADES

Highly integrated Low cost ~ 10 ps (discr. + TDC) ~ 50 mW / channel

Beam test at CERN 2018

Barrel DIRC setup inside the black box

Barrel DIRC hit pattern at polar angle 20°

Beam test at CERN 2018

Good performance
Good agreement with Geant simulations

→ Today: Poster of Ahmed Ali

The performance of the Barrel DIRC is validated.

The second DIRC in PANDA is the Endcap Disc DIRC (EDD)

Endcap Disc DIRC (EDD)

- Four independent quadrants
 highly polished synthetic fused silica (quartz),
 20 mm thickness, 1056 mm outer radius
- Holding frame stabilizating cross for all four quadrants
- Focusing optics
 Expansion volume with focusing elements convert angle to position information
- Sensors
 96 MCP-PMT sensors with
 highly segmented anode (3 x 100 pixels)
- Readout
 TofPET2 ASIC, 64 channels
 1 ROM: 5 ASICs for 1MCP-PMT,
 24 ROMs per quadrant,
 in total ~ 28800 pixels

$$\theta_c = \arccos\left(\sin\theta_p\cos\phi_{\rm rel}\cos\varphi + \cos\theta_p\sin\varphi\right)$$

Optics made of synthetic fused silica

EDD Design

3 x 100 pixels 3 x 128 pixels

EDD Prototype from Test Beam 2018

Radiator: Fused silica, 500 x 500 x 20 mm³

- 9 focusing elements (FELs),
- 3 readout modules (ROM),
- 3 photon sensors (MCP-PMTs)

Selected test-beam results for the EDD prototype: 2018

Selected test-beam results for the EDD prototype: 2018

Cherenkov angle (rad)

Single photon resolution (mrad)

Barrel DIRC and Endcap Disc DIRC performance validated in test beams,

Both TDRs are completed

→ next steps ?

Next steps

- 2020-2022: Industrial fabrication of Barrel DIRC main components (sensors, bars, lenses, prisms),
 Production and QA of readout electronics.
- 2021-2022: Industrial fabrication of Barrel DIRC bar boxes and mechanical support frame;
 QA of all components; gluing of long bars, assembly of complete sectors.
- 2023/2024: Installation in PANDA, commissioning.

- 2021-2024: Industrial fabrication of 4 independent Endcap Disc Dirc quadrants and mechanical support frame, gluing of focusing elements/plates, detailed scans of all sensors assembly of readout units.
- 2023/2024: Installing prototype in phase 1: One quadrant with 3 ROMs.
- 2025: Completing the quality assurance of components.
- 2026/2027: Installation of the Endcap Disc DIRC into the PANDA detector and commissioning.

Summary

- The Barrel DIRC design with narrow bars, 3-layer spherical lens, and compact prisms meets or exceeds the PANDA PID requirements.
- The mass production has started. First 4 bars are shipped this week by Nikon.
- Final state of MCP tendering.

- The Endcap Disc DIRC with 4 independent quadrants and focusing optics is a key component of the PANDA PID system.
- The Endcap Disc DIRC PID performance is successfully validated in particle beams.

Thank You

INSTR'20, Carsten Schwarz, GSI