

Performances of a resistive MicroMegas module for the Time Projection Chambers of the T2K Near Detector upgrade

The T2K experiment The ND280 Near Detector

- T2K: Long baseline neutrino experiment from Tokai to Kamioka.
- **Goals of ND280:** Measure flux & spectrum of neutrinos before oscillation.
 - Measure v-nucleus cross-sections.
 - Measure v_e contamination.

The ND280 upgrade Motivations

Current ND280

Proposed ND280 upgrade

- + a new highly granular scintillator detector (Super-FGD)
- + 6 TOF planes surrounding the new tracker

ND280 upgrade TDR: arXiv:1901.03750v1

• T2K-II phase:

- Installation begins in 2021
- Beam power upgrade (~two-fold)
- Goal: measure δ_{CP} at 3σ by decreasing of systematic errors in ND280 from 6% to 4%

The ND280 upgrade The new HA-TPCs overview

The new HA-TPCs readout The resistive MicroMegas concept

If a single pad is fired, then resolution:

 $\sim pad_{size}\sqrt{(12)}$

 Mesh @ GND

 ~128μm
 LC@ ~ +400V

 Insulator: ~50μm
 DLC@ ~ +400V

 glue: ~75μm
 glue: ~75μm

 pads
 FR4 PCB

 M. S. Dixit et al., NIMA 518 (2004), p.721

 ILC-TPC R&D: P. Colas et al.

Resistive Bulk-MM

- Charge dispersion in 2-D RC network
- Gaussian spreading as a function of time

$$\sigma(\mathbf{r}, \mathbf{t}) = \frac{\mathrm{RC}}{2\mathrm{t}} \mathrm{e}^{\left[\frac{-r^{2}\mathrm{RC}}{4\mathrm{t}}\right]} \quad \sigma_{r} = \sqrt{\left(\frac{2t}{RC}\right)}$$

R: surface resistivity C: capacitance/unit area

Two beam tests used 2 different resistive MM modules.

	CERN TESTS	DESY TESTS	
Name	MM0-DLC#	MM1-DLC#	
Readout PCB	Original T2K-TPC	HA-TPC	
Size	34 × 36 cm ²	34 × 42 cm ²	
Pads	48 × 36 cm ²	32 × 36 cm ²	
Pad size	6,85 × 9,65 mm²	10,09 × 11,18 mm ²	
Pad number	1728	1152	
Isolation layers	75-200 μm glue + 50 μm APICAL	75 m glue + 50 µm APICAL	
•			

MM0 is same layout as current ND280 v-TPCs MicroMegas but with resistive foil. MM1 is the layout for the new HA-TPCs.

In total 33% channels reduction!

CERN T9 BEAM TEST Overview

• Remarks:

- Without Magnetic Field
- Not final Field Cage
- Looking only to beam straight tracks

Beam Test Goal:

Prove of concept

CERN T9 BEAM TEST Overview

Multi-Particle beam was used

- 0.5-1GeV data
- Gain scan with MM 330-380V
- Different drift distances 10,30,80cm
- Cosmic data for gas monitoring
- ► ⁵⁵Fe source placed at the cathode.

CERN T9 BEAM TEST Gas quality

- No monitoring chambers
- Reduction on gas flow + humidity in HARP TPC decreased gas quality over time.
- Correction factors were computed

CERN T9 BEAM TEST Gain studies

CERN T9 BEAM TEST dE/dx measurements

CERN T9 BEAM TEST Charge spreading analysis

CERN T9 BEAM TEST The Pad Response Function (PRF)

Simplest way to estimate the track position in the cluster (x_{reco}):

 x_{reco} = Center of Charge (**CoC**), i.e weighted mean of the position of the fired pads center.

However, there is a systematic bias in the true track position over the pad given that the pad size is finite.

- If we study this effect by quantifying $x_{true} x_{reco}$ we can build a pad response function, such that we can correct it.
- In previous slide we have seen $q_{pad}/q_{cluster}$ is an estimator of the distance to true track position. Therefore, we can build a PRF such as:

CERN T9 BEAM TEST Spatial resolution and PRF

INSTR-2020 | C. Jesús-Valls | Performances of a resistive MicroMegas module for the Time Projection Chambers of T2K ND280 Upgrade

14

CERN T9 BEAM TEST Spatial resolution analysis

550

500

450

400

350

300

250

200

0

Protons

Electrons

Pions

20

30

40

50

60

70

Drift distance [cm]

10

Ŧ

Much better resolution thanks to charge spreading.

Specially better for tracks close to the anode.

High energy electron beam was used

- 1-5 GeV, most of the data with 4 GeV
- Gain scan with MM voltages 330 400 V
- > Y and Z position scan (in the detector plane and along drift distance)
- ▶ 0, 20, 30, 45, 60, 80 degree MM rotation

- - Magnetic Field
 - Not final Field Cage
 - Final MicroMegas layout (Resistivity could change).
- Beam Test Goals:
 - Check performance in larger pads.
 - Scan over parameters.
 - Characterize the charge spreading.

DESY BEAM TEST Parameters scan

Increasing MM voltage also increases # of saturated pads. Best compromise could be around 360V.

DESY BEAM TEST Parameters scan

CERN Field Cage Prototype with MM1 Tests ongoing

Remarks:

- Magnetic Field
- Not final Field Cage
- Final MicroMegas layout (Resistivity could change).
- Beam Test Goals:
 - Check performance in larger pads.
 - Scan over parameters.
 - Characterize the charge spreading.

Conclusions

The resistive MicroMegas concept was successfully evaluated using CERN beam test data using current v-TPCs MM + resistive foil, providing figures of merit satisfying ND280 upgrade HA-TPCs requirements.
C.Jesús-Valls, S.Suvorov et al., NIMA 957 (2020): 163286

C.Jesús-Valls, S.Suvorov *et al.*, NIMA 957 (2020): 163286 https://www.sciencedirect.com/science/article/pii/S0168900219315426

The new layout with ~30% less pads and increased resistivity was tested last fall at DESY. Preliminary results show very good performance.

- There are studies ongoing analyzing:
 - Foil Resistivity.
 - 2D PRF method
 - Development of simulations based on data.
- Remarkably, preliminary results show that this new technology improves the resolution for straight tracks ~x3, while reducing ~30% de # pads.

The first field cage prototype is being tested at CERN using cosmic tracks and there is an ongoing analysis to measured E field distortions.

There are plans to take new data in DESY this autumn using both a field cage prototype and the final resistive MicroMegas.

Installation is scheduled for fall 2021.

Back Up

Back Up Extra upgrade motivations

Back Up The new HA-TPCs requirements

• To keep $\frac{\Delta E_{\perp}}{E_{\parallel}} \le 10^{-4}$ confined at <1.5 cm from FC walls, the TPC cage requirements are: - Field Cage walls flatness better than 0.3mm,

- Cathode flatness better than 0.1 mm,
- Micromegas detector flatness better than 0.2 mm,
- Cathode/Anode planes parallel to within 0.2 mm,

- Voltage divider resistors matched within $rms \sim 0.1\%$

Deale/Eatle to be supervised		Parameter	HA-TPC	v-TP	С
Peels/Foils to be wrapped		$Overall x \times y \times z (m)$	$2.0 \times 0.8 \times 1.8$	0.85 x 2.2	x 1.8
all around the mold		Drift distance (cm)	90		
		Magnetic Field (T)	0.2		
		Electric field (V/cm)	275		
170cm	and the second	Gas Ar-CF ₄ - iC_4H_{10} (%)	95 - 3 - 2		
	and a second	Drift Velocity $cm/\mu s$	7.8		
		Transverse diffusion $(\mu m / \sqrt{cm})$	265		
		Micromegas gain	1000		
		Micromegas dim. z×y (mm)	340x420	340x36	; 0
	Pad $z \times y$ (mm)	10 × 11	7x10		
		N pads	36864	124272	
		el. noise (ENC)	800		
		S/N	100		
	Structural bars	Sampling frequency (MHz)	.) 25		
	providing mechanical	N time samples	511		
	- strength to the box				
	- support for peels - termination to HC	Material	thickness d	average	d/X ₀
	panels		d (mm)	$X_0 (mm)$	(%)
Stru	ictural frame Flances	Double layer strip foil (+glue)	0.05	110/01	0.07
pro	viding mechanical	\rightarrow Copper strips	~0.005	14.3 (Cu)	~0.07
- st	iffness to the box	Aramid Fiber Fabric (Twaron)	2.0	~240	0.70
- te	rmination to HC panels	Aramid honeycomb panel (Nomex)	25	14300	0.17
Exploded view of half FIELD CAGE	ange purpose for	Aramid Fiber Fabric (Twaron)	2.0	~ 240	0.70
around the motallic mold	de/cathode connection	Aluminized Myler (+glue)	0.125	200	0.04
around the metallic mold		\rightarrow Aluminum laver	0.03	89 (AI)	~0.02
		Total	~30	00 (111)	~1.6

Back Up The new HA-TPCs electronics

Back Up Details on CERN BeamTest gas quality

Experimental conditions:

- HARP TPC stored in air for more than 10 years.
- No FC drying before operation.
- Gas gas reduced from 60L/h to 25L/h to save gas.
- There were no gas monitoring chambers.

Simulations:

- Drift velocity was at most 5.5cm/µs, should have been 6.8cm/µs.
- Small attenuation and large reduction in drift velocity points out to humidity.

Back Up Truncated mean method

Optimum truncation keeping 21 clusters (out of 34)

Back Up Charge Spread MM0 (CERN TESTS)

