High precision time measurements in future experiments

J. Va’vra, SLAC
High luminosity drives new timing developments

- 4D tracking, which is a combination of Time & Position measurement:
 a) Tracking detector for ATLAS & CMS: ~ 10’s of ps & 10’s of µm per MIP/pixel.
 b) New RICH DIRC detector applications: ~ 80-100 ps/photon/pixel.

- There is a general push for higher luminosity at LHC, Belle-II, Panda, Electron-ion collider, etc.
Examples of high resolution timing at a level of ~30 ps for MIPs, and ~100ps for single photons

ATLAS High-Granularity Timing Detector (HGTD) with Low Gain Avalanche Diodes (LGAD):

TORCH DIRC at LHCb:

ALICE-like MRPC TOF counters:

Panda Barrel DIRC: Panda Endcap DIRC: Belle-II iTOP DIRC: EIC DIRC in USA: FIT at ALICE:

2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020
Rate capability of various detectors
MCP rate capability
A. Lehmann, Panda, RICH 2010, Cassis, France

- Older MCPs could operate up to \(~200-300\ \text{kHz/cm}^2\) at a gain of \(10^6\).
- Endcap Panda DIRC MCPs plan to operate rate up to \(~2\ \text{MHz/cm}^2\).
- Belle-II TOP counter MCPs plan to operate at a rate of \(~2\ \text{MHz/cm}^2\).
- LHCb TORCH MCPs plan to operate at a rate of up to \(~36\ \text{MHz/cm}^2\), or \(~2\ \text{MHz/one micro-pad}\).
MCP QE aging and total charge
A. Lehmann, RICH 2018 and K. Matsuoka, TIP 2017

- Lehmann & Matsuoka: Latest Photonis and Hamamatsu MCPs reached $\sim 20 \text{ C/cm}^2$.
- Belle-II: expect total of $\sim 10 \text{ C/cm}^2$.
- LHCb TORCH: expect total of $\sim 5 \text{ C/cm}^2$.

- Message: New ALD-based treatment has improved MCP QE lifetime significantly.

2/25/20
J. Va'vra, INSTR20,
Novosibirsk, 2020
Maximum rate and charge dose capability of other detectors

ALICE MRPCs:
- Present detector can run at \(~500\, \text{Hz/cm}^2\).
- New low resistivity MRPCs will run at \(~50\, \text{kHz/cm}^2\).

Diamond (TOTEM):
- This technology is very radiation hard.
- High rate capability achieved: \(~3\, \text{MHz/cm}^2\).

SiPMs:
- Operation of some RICH detectors in single photon regime at \(10^{11}\text{n_{eq/cm}^2} \& -30\, ^{\circ}\text{C}\) is possible.
- All SiPMs, even those irradiated up to \(10^{14}\, \text{n_{eq/cm}^2}\), are “usable” at liquid nitrogen temperature.

LGADs (ATLAS UFSD project):
- Expect rates up to \(~40\, \text{MHz/cm}^2\).
- Sensors & ASICs will be exposed to \(3.7\times10^{15}\, \text{n_{eq/cm}^2}\) and \(4.1\, \text{MGy} (!!!) \)!!!
- Present test results are very close to this goal.
Time measurement
Timing resolution for leading edge timing
(Well-known formula to fast electronics designers for a long time)

A simple formula:
\[\sigma_{\text{time}} = \frac{\sigma_{\text{noise}}}{(ds/dt)_{\text{threshold}}} \sim \frac{t_{\text{rise-time}}}{(S/N)} \]

- For LGAD detector with \(t_{\text{rise-time}} \sim 400\text{ps} \), one needs \(S/N \sim 20 \) get to a \(\sim 20 \text{ ps} \) regime.
- However, this picture is over-simplified - see next slide.
Many other contributions to timing resolution, which makes timing measurement difficult

Example of contributions to the timing resolution:

\[\sigma_{\text{Total}} \sim \sqrt{\left(\frac{\sigma_{\text{TTS}}}{\sqrt{N_{\text{pc}}}} \right)^2 + \left(\frac{\sigma_{\text{pixel}}}{\sqrt{12}} \right)^2 + \sigma^2_{\text{Electronics}} + \sigma^2_{\text{Track}} + \sigma^2_{\text{to}} \ldots} \]

- \(\sigma_{\text{Electronics}} \): electronics contribution
- \(\sigma_{\text{pixel}} \): pixel size
- \(\sigma_{\text{TTS}} \): single electron transit time spread
- \(\sigma_{\text{Track}} \): timing error due to track length \(L_{\text{path}} \)
- \(\sigma_{\text{Time walk}} \): time walk due to pulse height changes
- \(\sigma_{\text{to}} \): start time (often dominated by the bunch length)

+ There are many other possible effects in a large system:
 - clock distribution throughout a large system
 - cross-talk effects in multi-pixel detectors (ringing in a multi-photon environment)
 - baseline oscillation or other instability in multi-pixel detectors
 - charge sharing in multi-pixel detectors (pixel edge effects)
 - chromatic effects
 - unwanted pulse tails
 - Calibration
 - ground loops, current return, differential vs. single ended readout, etc.
Ultimate resolution using single-pixel MCP-PMTs
This is the fastest detector to my knowledge

J. Milnes and H. Howorth, Photek Co. info, 2005

Photek MCP 110:
- single photons
- no amplifier

Using the simple formula:
If we assume $S/N \sim 20$

$\tau_{\text{rise time}} \sim 66 \text{ ps}$

$\sigma_{\text{time}} \sim \frac{\tau_{\text{rise time}}}{(S/N)} \sim 3 \text{ ps}$
MCP-PMT: Single-pixel TOF counter, no amplifier, large Npe

K. Inami et al., NIMA560(2006)303
Two Hamamatsu R3809U-59-11 MCPs:
- 6 microns MCP hole sizes
- Fused silica radiator + window: 10+3 mm
- Single pixel
- MCP Gain ~ 2x10^6
- SPC-134, Becker & Hickl GmbH
- Electronics resolution: 4.1 ps
- Npe ~ 70
- Total anode charge: 1.4x10^8 el. !!

A. Ronzhin et al., NIMA795 (2015)288
Two back-to-back Photek 240 MCPs:
- 6 microns MCP hole sizes
- Fused silica window: 8 mm
- Single pixel
- MCP Gain ~ 10^6
- DRS4 waveform digitizer
- Electronics resolution: 2.0 ps
- Npe ~ 80
- Total anode charge: 8x10^7 el. !!

L. Sohl et al., Elba conf., 2018
Two Hamamatsu R3809U-50 MCPs:
- 6 microns MCP hole sizes
- Fused silica radiator: 3.2 mm
- Single pixel
- MCP Gain ~ 8x10^4
- 20 GSa/s scope + CFD algorithm
- Electronics resolution: 2.2 ps
- Npe ~ 44
- Total anode charge: 3-4x10^6 el.

K. Inami et al., NIMA560(2006)303

A. Ronzhin et al., NIMA795 (2015)288

L. Sohl et al., Elba conf., 2018

• **Message:** Excellent resolution can be achieved with a single-pixel MCP for MIP signals.
• **However, one has to be careful running large anode charges** – see next slide.

2/25/20
J. Va'vra, INSTR20, Novosibirsk, 2020
Why do I want limit total charge on MCP?

Ion feedback (afterpulse fraction) with two old Burle Planacon tubes with 10 µm holes:

- Message: One should limit total charge to ~2-3x10^6.
- Are the new MCPs behaving better? – see next slide.
Challenges of multi-pixel detectors
ALICE MRPC TOF detector
C. Williams, private communication, and Jaron et al., Nucl.Instr.&Meth A 33(2004)183

• Message #1: Differential design throughout to minimize pick-up, cross-talk, etc.
• Message #2: Time-over-threshold pulse height correction works if pulse shapes are “clean”.
• Message #3: NINO electronics provides a low power consumption (40 mW/channel; 1ns-peaking time, 8 ch./chip).
• Message #4: ALICE timing resolution was limited by t_0 resolution $\Rightarrow \sigma_{\text{Total ALICE system resolution}} \approx 60$ ps.

• New R&D MRPC in progress:
 a) ALICE is doing R&D with lower resistivity 400 µm-thick glass, allowing to build 20-gap MRPC capable of rate up to ~ 50 kHz/cm2
 b) sPHOENIX at BNL is doing R&D using 2.8 GHz differential preamp LMH 6881 and DRS4 digitizer (M. Chiu).

2/25/20

J. Va'vra, INSTR20, Novosibirsk, 2020
How to connect to Planacon MCP-PMT?

In principle, MCP is a simple device, but….:

The issue is how to connect to it? Various schemes which were tried:

- MCP is inherently a single-ended device, which invites a possible pick-up problems. One needs a good RF-shielded box around the device to avoid noise on the ground reference.
- Early Planacon models had unwanted capacitances, inductances, ground return issues, and low BW connectors, which contributed to cross-talk, pulse shape distortions, ringing, fake hits, etc.
- Good news: There is a progress. See appendix.
SLAC 1-st FDIRC prototype with 320-pixels in MCPs

SLAC Amplifier based on Elantek 2075:
Voltage gain of ~130x, and a rise time of ~1.5ns.

SLAC CFD (32 ch/board):

- Old Burle Planacon:

Single photons from laser:

- SLAC Amplifier based on Elantek 2075:
- Single pixel timing resolutions with Planacon MCP:

• **Message:** This was still one of the best timing performance of any large RICH detector system with MCPs.

2/25/20

J. Va'vra, INSTR20,
Novosibirsk, 2020
Cross-talk in early version of Planacon MCP 85011-501

Inject signal to pixel #1 and observe cross-talk in other pixels:

- **Message:** The cross-talk was very complicated geometrically on the old Planacon.
- New MCPs behave better – progress after 15 years! See appendix.

Electronics used in this test:
Total voltage gain of 130x = Elantek 2075 amp. 13x + Phillips amp. 10x

All 64 pixel instrumented

Ringing if too many photons arrive at the same time
1024 pixel Burle Planacon – available already in 2005

1) **FDIRC at SLAC:**

Burle Planacon 85021-600 with 1024 pixels:
- Small margin around boundary
- 1024 pixels (32 x 32 pattern)
- Small pixel size: ~1.4mm x 1.4mm
- Pitch: 1.6 mm
- Bottom MCP-to-anode dist.: **5.2 mm**

2) **µPET:** David Brasse: read every pixel (MCP coupled to matrix of LYSO crystals)

Planacon 85022-600 (Jeff DeFazio):
- Bottom MCP-to-anode dist.: **3.6 mm**

Message: In retrospect, we at SLAC, could have chosen 8-channel NINO ASIC to readout every pixel.

2/25/20

J. Va’vra, INSTR20, Novosibirsk, 2020
Several large physics applications with MCP-PMTs
Endcap Panda DIRC: Photonics MCP with TOFPET electronics

Panda Endcap DIRC TDR, 2019, and Jeff DeFazio, private communication

• **Goal:** TTS resolution of ~100ps; presently they got ~320 ps with negative MCP pulses.

• **Problem:** TOPFET ASIC was designed for positive pulses, i.e. it works well with SiPMTs. There is an effort to talk to company to provide a modification of the ASIC to work with negative MCP pulses.

• **Message:** TOPFET2 ASIC is using time-over-threshold timing, it is cheap, electronics has low mass, it is radiation hard and has low power consumption (<10mW/ch).

J. Va’vra, INSTR20, Novosibirsk, 2020
Belle-II: TOP DIRC counter waveform digitizing electronics

Work led by Gary Varner, Univ. of Hawaii, details in D. Kotchetkov et al., ArXiv:1804.10782, 2018

DIRC TOP counter principle (450mm wide x 2600 mm long):

- IRSX waveform digitizer: 2.7 GSa/sec, an equivalent to a cheap scope on every pixel.
- Amplifier gain: ~120x. They slowed down the risetime to have 2 samples on leading edge.
- Message: The total power consumption is very high: ~570 mW/channel!
Because of a large background, MCP gain had to be lowered to $\sim 3 \times 10^5$. As a result of this and other effects, the single photon timing resolution in Belle-II is presently: 80-120ps.

Max photon rate is kept < 4 MHz/MCP. Some non-ALD coated MCPs will have to be replaced in 2020.
LHCb: TORCH TOF MCP-PMTs

N. Harnew, RICH 2018, J.S. Lapington et al., NIMA 695(2012)78, T.M. Conneely et al., JINST, May 2015 and S. Bhasin et al., to be published in NIM

- Challenge #1: Required single photon resolution: ~70 ps/photon and ~10-15ps/track.
- Challenge #2: Expected rates at LHCb: 10-40 MHz/cm², and anode charge doses up to ~5C/cm².
 Aging tests with Phase-I MCP: good up to ~3C/cm² only at present.
- Message #1: TOT timing with 32-channel NINO ASIC works well, although calibration is complicated.
Si detectors
SiPMs radiation hardness is an issue for RICH detectors

• **Message #1:** High energy protons and neutrons produce the most damage. Damage from thermal neutrons is observed only at high doses. Gammas produce comparatively lower damage.

• **Message #2:** Lower temperature can reduce noise rate caused by the neutron damage. All SiPMs, even those irradiated up to $10^{14} \text{n}_{eq}/\text{cm}^2$, are “usable” at liquid nitrogen temperature. Operation for RICH detectors in single photon regime at $10^{11} \text{n}_{eq}\text{cm}^{-2}$ and –30 °C is possible.
EIC R&D on ARICH: SiPMTs noise rate = f(temperature)

C.P. Wong et. al., NIM A 871, 13 (2017)

- Hamamatsu SiPMT 16 x 16 matrix with 3 mm x 3 mm pixel sizes; ~100ps timing is possible.
- **Message:** Low temperature clearly helps to reduce the room temperature noise.

Optics with Fresnel lens:

Room temperature:

~120 GeV proton test beam of Aerogel RICH:
ATLAS Endcap Low Gain Avalanche Diodes

H. Sadrozinski, private communication, ATLAS technical proposal, 2019, and

- Bench tests: Very good timing and position resolution results using a laser (σ ~ 10’s of ps & 10’s of µm).
- Radiation damage: They reached ~3x10^{15} n_{eq}/cm^2 and 4 MGy, i.e., very close to the final goal. (1 MGy = 100 Mrads !!).
- Two ASICs, ALTIROC (ATLAS) and ETROC (CMS) under development.
- Message: There seems to be a real progress.

12 cm < r < 60 cm
7888 sensor modules

ATLAS UFSD Endcap:

LGAD sensors, ASICs, cooling and connection package:

12 cm < r < 60 cm
7888 sensor modules

Present design have a region of no gain:

Position and time are determined by amplitude-weighted centroid using four pads
Present design:
 Pitch: 1.3 mm
 Gap: ~70 µm
 Fill factor: ~90%

2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020
Gas detectors
Gasous detectors: Timing with Micromegas

Y. Giomataris, private communication, and J. Bortfeldt et al., arXiv:1901.03355, 2019

- Pixel size: ~1cm² area
- Photocathodes: CsI or DLC (diamond-based photocathode)
- Gas: 80% Ne+10% CF₄+10% C₂H₆
- 3 mm MgF₂ window/radiator
- Cividec amp 1-2 GHz BW, and SAMPIC waveform digitizer or 20 GSa/s LeCroy scope

- CsI photocathode: ~24 ps/MIP (150 GeV/c muons), ~76 ps for single photoelectrons!! Mean number of photoelectrons with CsI: ~10 per/MIP.
- Diamond photocathode: ~40 ps/MIP with 97% det. eff.; need a factor of 3 improvement of QE.
- Message: Gaseous detectors are not dead yet.
Conclusions

• There has been a real progress in developing 4D LGAD detectors hoping to achieve a position resolution of 10’s of µm and 10’s of ps per MIP.

• Similarly photon detectors were developed providing ~100 ps per single photon with very small-pixel sizes.

• But future will tell if the promised timing resolution, which is inherently a very sensitive analog quantity, can be achieved in large background environment and in very large detector applications. It is very challenging task.
Appendix
Maximum rate and charge dose capability

MRPC (ALICE): System MIP resolution of \(\sim 60 \, \text{ps/MIP} \) and rate capability of \(\sim 500 \, \text{Hz/cm}^2 \).
New R&D: MIP rate up to \(\sim 50 \, \text{kHz/cm}^2 \) with a new low resistivity glass are under study.

MCPs: MIP timing resolution of \(< 10 \, \text{ps/MIP} \) with a single-pixel MCP achieved.
Single photon timing resolution of \(\sim 30-100 \, \text{ps/photon} \) achieved.
Endcap DIRC in Panda: expect rates up to \(\sim 1 \, \text{MHz/cm}^2 \) for single pe’s @ gain of \(10^6 \).
TORCH at LHCb: expect rates up to \(\sim 40 \, \text{MHz/cm}^2 \) !!
Panda R&D: anode charge dose up to \(\sim 20 \, \text{C/cm}^2 \) using single pe’s with Photonis MCP.
TORCH: The 1-st generation of Photek MCPs reached \(\sim 3-4 \, \text{C/cm}^2 \).
The latest Hamamatsu MCPs almost reached \(\sim 20 \, \text{C/cm}^2 \).

Diamond (TOTEM): MIP timing resolution of \(\sim 80 \, \text{ps/MIP} \) achieved.
This technology is very radiation hard.
High rate capability achieved: \(\sim 3 \, \text{MHz/cm}^2 \).

SiPMs: MIP timing resolution of \(\sim 13 \, \text{ps} \) achieved in a beam test.
Significant noise increase after \(\sim 10^{10} \, \text{neutrons/cm}^2 \).
Cooling helps.

LGADs (ATLAS UFSD project):
MIP timing resolution of \(\sim 30 \, \text{ps/MIP} \), and \(\sim 16 \, \text{ps/MIP} \) for tandem of three achieved.
Expect rates up to \(\sim 40 \, \text{MHz/cm}^2 \).
Sensors & ASICs will be exposed to \(3.7 \times 10^{15} \, \text{n}_{eq/cm}^2 \) and \(4.1 \, \text{MGy} \) (!!!) in ATLAS !!!!
Present test results: OK up to \(3 \times 10^{15} \, \text{n}_{eq/cm}^2 \) and \(4 \, \text{MGy} \).

Micromegas (CsI): Timing resolution of \(\sim 24 \, \text{ps/MIP} \) and \(\sim 76 \, \text{ps/photon} \) achieved in a beam test.

2/25/20
J. Va’vra, INSTR20,
Novosibirsk, 2020
Electronics for the best timing result

- **Ortec 9327 Amp/CFD** can reach $\sigma_{\text{Electronics}} \approx 2\,\text{ps}$ resolution, if one avoids TAC electronics.
- **DRS4 waveform digitizer** can reach $\sigma_{\text{Electronics}} < 1\,\text{ps}$ for very small delay between start & stop.
- **20 GSa/s scope** with CFD algorithm can reach $\sigma_{\text{Electronics}} \approx 2\,\text{ps}$.

Message: If your electronics contributes $\approx 2\,\text{ps}$ to the resolution, you are doing very well.
Ion feedback in new MCPs, ALD-coated, Npe=1

A. Lehmann, private communication, April 22, 2018

Both are ALD-coated MCPs:

- Photonis XP85112 MCP-PMT performs well at a total charge of $\sim 3 \times 10^6$
- Hamamatsu R13266 sees an increase in the rate already at a total charge of $\sim 1.5 \times 10^6$.
Cross-talk in Multi-pixel MCPs
FIT group at ALICE: Modification of Planacon MCP 85012

Y.A. Melikyan on behalf of ALICE, RICH 2018, MCP modifications done by Jeff DeFazio, Photonis.

Reduce 64 pixels to 4 pixels: Add two boards: The cross-talk and pulse ringing (b) before and (c) after:

- **Message:** A modification of 64-pixel Planacon XP85012 included:
 (a) reduced number of pixels from 64 to 4 (SMA connectors),
 (b) add two boards,
 (n) improved the HV ground return and
 (d) increased a distributed capacitance along MCP edges.

- **Goal of FIT:** Timing resolution $\sigma \sim 30$ ps/track

2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020
Panda R&D: Latest update on ringing of new 64-pixel Planacon

Albert Lehman, private communication, May 7, 2019, and Jeff DeFazio, private communication, 2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020

32 pixels fire at the same time: All pixels fire at the same time: Latest Photonis Planacon, 2019:

Hamamatsu 64-pixel (R13266-07-M64M): Photonis (#9002108) - a previous model: Photonis (#9002150) - a latest model: Latest Photonis Planacon:

5 ns/div 5 ns/div

New features (from Jeff DeFazio):
- New connector.
- Smaller anode-ground capacitance.
- Better ground return.
- Tube has the ground plane.
(Jeff thinks it helps to reduce ringing).

- **Message:** Latest Photonis MCP (#9002150) has much better ringing performance.
Ringing in early version of Planacon MCP vs. MaPMT

- Message: Amplitude of ringing increases with number of photons hitting MCP. Had to increase the discriminator threshold to avoid fake hits.

- H-8500 MaPMT with the same electronics was OK.
MCPs in magnetic field
Endcap Panda: MCP charge footprint in magnetic field can be very small
J. Rieke et al, JINST 11, 2016, and Panda Endcup DIRC TDR, 2019

- MCP has 0.4 mm x 17 mm anode pads.
- 3 rows x 100 strip configuration.
- MCP-Anode gap = 0.625 mm
- tube does not have a ground plane

Message: A magnetic field of only ~0.1 T will reduce the charge footprint to ~15µm!!
MCP gain in magnetic field

A. Lehman, RICH 2018, Moscow:

- ALD tubes seem to show faster gain drop in B-fields than non-ALD tubes!
- Photonis 9002108: gain drop by a factor of 2 at 1 Tesla, at 0 deg.
- Hamamatsu YH0250: gain drop by a factor of 4 at 1 Tesla, at 0 deg.
- Argonne ALD-coated MCP: gain drop by a factor of more than 10 at 1 Tesla, at 0 deg.

Xie et al., ANL R&D, 2019, submitted to NIMA:

2/25/20 J. Va'vra, INSTR20, Novosibirsk, 2020
Ion feedback in MCP = f(B)

J. Va’vra, Log book #7, 2009

2. Single electron response regime (25 μm holes)
 - laser at 33%, 100 Hz, 9 mylar att., single fiber (no splitter)
 - VT-120 amplifier
 a) B = 0 kG, 2.4 kV, ~6x10⁵, measure the feedback rate, run for 20 minutes in each case:
 - Feedback rate : < 1%
 A special run lasting 2 hrs:
 b) ~5 kG, keep 2.4 kV to get the same gain.
 - 5.03 kG, 482 A, 40.4 V
 - Feedback rate : < 1%
 c) ~7.5 kG, set 2.5 kV to get the same gain
 - 7.54 kG, 726 A, 60.3 V
 - Feedback rate : < 1%
 d) ~10 kG, keep 2.65 kV to get the same gain.
 - 10.03 kG, 974 A, 81.1 V
 - Feedback rate : < 1%
 e) ~12 kG, keep 2.8 kV to get the same gain
 - Feedback rate : < 1%

- No difference within my errors.

• Message: No increase in the ion feedback observed within my errors.
FDIRC development at SLAC
Can one do timing with low total charge?

- Low gain ~2x10⁴, vary Npe (1-100)
- Total charge: ~8x10⁵ for Npe ~40
- For Npe ~ 40 pe, we reached ~14 ps.
- For Npe ~80, one could reach ~10ps.

Message: For TOF application, one can reach a good resolution even at low gain if Npe ~40-80.
Single pe MCP pulses, no amplifier

Burle Planacon MCP-PMT
(85013-501):

- 10 µm MCP hole dia.
- Gain ~10^6
- 64 pixels, pad size: 6 mm x 6 mm
 (ground all pads except four)
- Ganging 4 pixels together increases a capacitance.
- PiLas laser is used as a scope trigger

Using our simple formula:

$\sigma_{\text{noise}} \approx 0.4$ mV
$S \approx 8$ mV
$S/N \approx 8/0.4 \approx 20$

$t_{\text{rise time}} \approx 150$ps (with a better scope)

$\sigma_{\text{time}} \approx t_{\text{rise time}} / (S/N) \approx 7-10$ ps

- That told me that one can reach a very good resolution with this MCP

Using our simple formula:

$\sigma_{\text{noise}} \approx 0.4$ mV
$S \approx 8$ mV
$S/N \approx 8/0.4 \approx 20$

$t_{\text{rise time}} \approx 150$ps (with a better scope)

$\sigma_{\text{time}} \approx t_{\text{rise time}} / (S/N) \approx 7-10$ ps

- That told me that one can reach a very good resolution with this MCP
A good TTS resolution even with slower electronics

Planacon 85013-501 single electron pulses with Hamamatsu 63x amplifier C5504-44:

- 10 µm MCP hole diameter
- Gain ~10^6, $N_{pe} = 1$
- 64 pixels, pad size: 6 mm x 6 mm.
 (single pixel used)
- $\sigma_{TTS} < \sqrt{(32^2 - \sigma_{Laser}^2 - \sigma_{Electronics}^2)} \sim 27$ ps
- Philips 715 CFD, Pilas laser (635nm).
- LeCroy TDC 2248

Hamamatsu C5594-44 amplifier

1.5 GHz BW, 63x gain, 2.8kV

- $\sigma_{TTS} \sim 27$ ps

Ortec VT120A amplifier

~0.4 GHz BW, 200x gain + 6dB, 2.8kV

- $\sigma_{TTS} \sim 27$ ps

- One can obtain a good TTS resolution even with a slower amplifier, if one has a good S/N ratio, and one tunes CFD discrimination carefully.
MCP-to-cathode distance - a way to eliminate tail
SLAC effort: NIMA553(2005)96

MCP-to-Cathode distance = 6 mm
85011-501 Nominal design:

\[
\sigma_{\text{arrow}} = (70.6 \pm 1.6) \text{ ps} \\
\sigma_{\text{side}} = (217.0 \pm 8.5) \text{ ps}
\]

\[
\begin{array}{c}
\text{time (ns)} \\
0 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 & 5.5
\end{array}
\]

\[
\begin{array}{c}
0 & 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000
\end{array}
\]

MCP-to-Cathode distance ~0.85 mm
85014-430 Drop Faceplate:

\[
\sigma_{\text{arrow}} = (66.7 \pm 3.5) \text{ ps} \\
\sigma_{\text{side}} = (161.6 \pm 6.7) \text{ ps}
\]

\[
\begin{array}{c}
\text{time (ns)} \\
0 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 & 5.5
\end{array}
\]

\[
\begin{array}{c}
0 & 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000
\end{array}
\]

Planacon stepped face MCP (85014):

- Penalty: the efficiency drops to zero half way through all edge pads.
Pixel edge effects in MCP timing
SLAC effort: NIMA 553(2005)96-106

- Pixel edges and corners have worse timing resolution due to charge sharing.
- In principle, it can be corrected if one has knowledge of a photon entry. But that entry point is usually not known.
LAPPD MCPs
LAPPD 8”x8” MCP detectors with strip readout

LAPPD detector with strips:

- **Generation-I detectors**: Strip line readout is now commercially available from Incom, Inc.
- **For many low rate applications this is an excellent choice.**

Strips: Single pe pulses (LAPPD #25):

Using a simple formula:

\[
S/N \sim 15 \\
t_{\text{rise time}} \sim 850 \text{ ps} \\
\sigma_{\text{time}} \sim t_{\text{rise time}} / (S/N) \sim 60 \text{ ps}
\]

Strips: TTS resolution (LAPPD #25):

- **Strip cross-talk problem can be calculated, in principle**:
 H. Grabas, LAPPD simulation study at U. of Chicago/Saclay, May 2012

\[\sigma_{\text{TTS}} \sim 64 \text{ ps}\]
LAPPD detector concept with capacitively coupled pixels:

- Generation-II detectors: (a) ceramic body, (b) capacitive coupling to external PCB board.
- This concept is still in R&D stage and detectors are not yet available.
- See appendix for more info.
Si Detectors
Si detectors: High gain SiPMTs
A. Rozhnin et al., Fermilab, Talk at Picosecond timing workshop, Arlington, Oct. 5-7, 2015

Start: SiPMT, Stop: Photek-240 MCP-PMT
- SiPMT: 3x3mm²
- 6 µm holes MCP
- 3 cm-long Fused silica radiator
- No extra radiator used on MCP, only 8mm-thick window
- Fast amplifier on SiPMT
- DRS4 digitizer

RF-shielded box:

8 GeV/c e⁻ beam (distance between two detectors: 7.12 meters)

The most recent result:
\[\sigma_{\text{SiPMT}} \sim 13 \text{ ps} \]

- Test achieved \(\sigma_{\text{SiPMT}} \sim 13 \text{ ps} \) resolution per MIP.

\(\sigma_{\text{SiPMT}} \sim \sqrt{14.5^2 - (8.3/\sqrt{2})^2} \sim 13 \text{ ps} \)
Timing + position + calorimeter + PIN diode

A. Ronzhin et al., Fermilab, SLAC talk, 2017

- Start: Photek-240 MCP
- Stop: Hamamatsu Si PIN diode – zero gain
- 6 x 6 mm² pad
- Absorber: Pb or W
- DRS4 digitizer

Si-PIN diode can achieve pretty good timing resolution in a calorimeter application.

RF-shielded box:

32 GeV Electron Beam

6X₀ tungsten absorber

Silicon PIN diode

Photek 240 MCP-PMT

Si PIN diode timing resolution: \(\sigma_{\text{PIN}} \approx 22 \) ps

TOF = \(t_{\text{MCP}} - t_{\text{PIN}} \) [ns]

Time resolution [ps]

Beam energy [GeV]

2/25/20

J. Va'vera, INSTR20, Novosibirsk, 2020
ATLAS: Low Gain Avalanche Diodes in test beam
Cartiglia et al., ArXiv:1608.08681, 2017

- Pixel size: 1.3mm x 1.3mm x ~45 µm thick
- AD from CNM
- Gain ~ 20 @ 200V on AD
- Cividec 100x amp., 1-2 MHz BW, CFD
- 20 GSa/sec (50 ps bins)

LGAD principle:

Using a simple formula:
\[t_{\text{rise time}} \sim 400\text{ps} \]
\[S/N \sim 20 \]
\[\sigma_{\text{time}} \sim \frac{t_{\text{rise time}}}{(S/N)} \sim 20 \text{ ps} \]

- Test beam achieved: \(\sigma_{\text{time}} \sim 34 \) for a single sensor, and \(\sim 16 \text{ ps} \) with a tandem of 3 sensors.
SiPMTs for RICH detectors with TOPFET2 ASIC

R. Bughalo et al., Talk at IEEE/NSF, Atlanta, 2017

• TOFPET ASIC was developed for Time-of-Flight Positron-Electron Tomography.
• Test achieved $\sigma_{\text{SiPMT}} \sim 90-100$ ps resolution per single photon at 7.5V overvoltage.
• Lesson #???: Lower power consumption (5-8 mW/ch.)

2/25/20

J. Va'vra, INSTR20,
Novosibirsk, 2020
Maximum rate and charge dose capability

<table>
<thead>
<tr>
<th>Detector</th>
<th>Experiment or beam test</th>
<th>Maximum rate</th>
<th>Maximum anode charge dose</th>
<th>Timing resolution</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRPC presently</td>
<td>ALICE</td>
<td>~500 Hz/cm² *** (tracks)</td>
<td>-</td>
<td>~60 ps/track (present) ***</td>
<td>[4]</td>
</tr>
<tr>
<td>MRPC after upgrade</td>
<td>ALICE</td>
<td>Plan: ~50 kHz/cm² ** (tracks)</td>
<td>-</td>
<td>Plan: ~20 ps/track</td>
<td>[4]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>Beam test</td>
<td>-</td>
<td>-</td>
<td>< 10 ps/track *</td>
<td>[7,8,9]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>Laser test</td>
<td>-</td>
<td>-</td>
<td>~27 ps/ photon *</td>
<td>[14]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>PANDA Barrel test</td>
<td>10 MHz/cm² * (laser)</td>
<td>~20 C/cm² *</td>
<td>-</td>
<td>[11]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>Panda Endcap</td>
<td>~1 MHz/cm² ** (photons)</td>
<td>-</td>
<td>-</td>
<td>[28]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>TORCH test</td>
<td>-</td>
<td>3-4 C/cm² *</td>
<td>~90 ps/ photon *</td>
<td>[27]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>TORCH</td>
<td>10-40 MHz/cm² ** (photons)</td>
<td>5 C/cm² **</td>
<td>~70 ps/ photon **</td>
<td>[24-27]</td>
</tr>
<tr>
<td>MCP-PMT</td>
<td>Belle-II</td>
<td>< 4MHz/MCP *** (photons)</td>
<td>-</td>
<td>80-120 ps/ photon ***</td>
<td>[23]</td>
</tr>
<tr>
<td>Low gain AD</td>
<td>ATLAS test</td>
<td>~40 MHz/cm² ** (tracks)</td>
<td>-</td>
<td>~34 ps/track/single sensor *</td>
<td>[34,35]</td>
</tr>
<tr>
<td>Medium gain AD</td>
<td>Beam test</td>
<td>-</td>
<td>-</td>
<td><18 ps/track *</td>
<td>[39]</td>
</tr>
<tr>
<td>Si PIN diode (no gain)</td>
<td>Beam test (electrons)</td>
<td>-</td>
<td>-</td>
<td>~23 ps/32 GeV e−</td>
<td>[8]</td>
</tr>
<tr>
<td>SiPMT (high gain)</td>
<td>Beam test – quartz rad.</td>
<td>-</td>
<td>< 10ⁱ⁰ neutrons/cm²</td>
<td>~13 ps/track *</td>
<td>[8]</td>
</tr>
<tr>
<td>SiPMT (high gain)</td>
<td>Beam test - scint. tiles</td>
<td>-</td>
<td>< 10ⁱ⁰ neutrons/cm²</td>
<td><75 ps/track *</td>
<td>[41]</td>
</tr>
<tr>
<td>Diamond (no gain)</td>
<td>TOTEM</td>
<td>~3 MHz/cm² * (tracks)</td>
<td>-</td>
<td>~90 ps/track/single sensor *</td>
<td>[36]</td>
</tr>
<tr>
<td>Micromegas</td>
<td>Beam test</td>
<td>~100 Hz/cm² * (tracks)</td>
<td>-</td>
<td>~24 ps/track *</td>
<td>[31,32,40]</td>
</tr>
<tr>
<td>Micromegas</td>
<td>Laser test</td>
<td>~50 kHz/cm² * (laser test)</td>
<td>-</td>
<td>~76 ps/ photon *</td>
<td>[31,32,40]</td>
</tr>
</tbody>
</table>

* Measured in a test
** Expect in the final experiment
*** Status of the present experiment