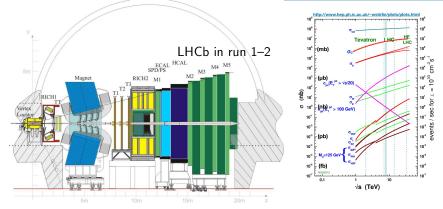
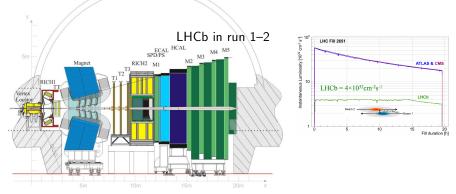
Software trigger for upgraded LHCb detector

Anton Poluektov on behalf of LHCb collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

25 February 2020




LHCb experiment

Forward spectrometer, optimised for *b* and *c* decays. $2 < \eta < 5$

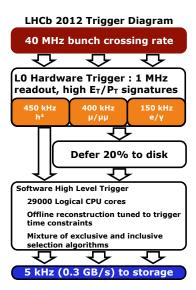
- Excellent vertex resolution (weak decays)
- High-precision tracking before and after the magnet
- PID in broad range of momenta 3 < p < 150 GeV
- Efficient trigger, including fully-hadronic final states

LHCb experiment

Forward spectrometer, optimised for *b* and *c* decays. $2 < \eta < 5$

- Excellent vertex resolution (weak decays)
- High-precision tracking before and after the magnet
- PID in broad range of momenta 3 < p < 150 GeV
- Efficient trigger, including fully-hadronic final states

LHCb DAQ and trigger in Run 1-2

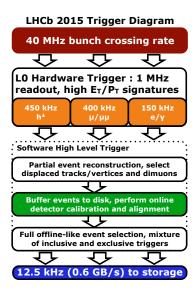

LHCb 2012 Trigger Diagram 40 MHz bunch crossing rate L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz Software High Level Trigger Introduce tracking/PID information, find displaced tracks/vertices Offline reconstruction tuned to trigger time constraints Mixture of exclusive and inclusive selection algorithms 5 kHz (0.3 GB/s) to storage 2 kHz 2 kHz 1 kHz Inclusive/ Inclusive Muon and Exclusive Topological DiMuon Charm

Trigger was continuously improved during Run 1-2 operation

Start of operation:

Storage bandwidth 5 kHz wrt 2 kHz in the design (additional b/w for charm)

LHCb DAQ and trigger in Run 1-2


Trigger was continuously improved during Run 1-2 operation

Start of operation:

Storage bandwidth 5 kHz wrt 2 kHz in the design (additional b/w for charm)

2012: Deferred trigger.
 Buffer 20% of bandwidth before HLT to disks (use interfill time)

LHCb DAQ and trigger in Run 1-2

Trigger was continuously improved during Run 1-2 operation

Start of operation:

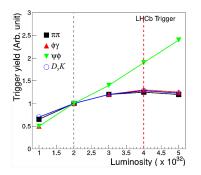
Storage bandwidth 5 kHz wrt 2 kHz in the design (additional b/w for charm)

2012: Deferred trigger. Buffer 20% of bandwidth before HLT to disks (use interfill time)

- **Run 2 (2015-2018):** Split HLT.
 - Buffer all HLT1 output to disk.
 - Run calibration and alignment.
 - Offilne-quality selections at the last stage of HLT.
 - Can run analyses on HLT2 output (Turbo stream)

HL-LHC CIVIL ENGINEERING:

LHC / HL-LHC Plan

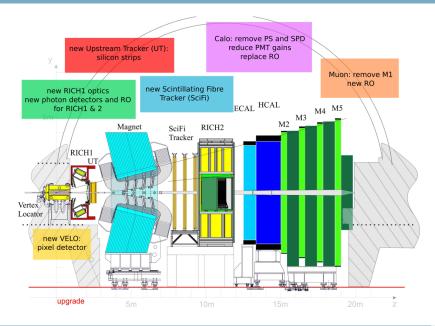

EXCAVATION / BUILDINGS

- LHC Run 2 finished in 2018
 - LHCb: $\int \mathcal{L} dt = 9 \, \text{fb}^{-1}$ collected in 2010-2018

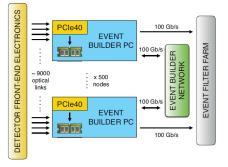
DEFINITION

- Long shutdown until 2021: upgrade of the machine and detectors
 - LHCb: major upgrade/replacement of the subsystems and readout

Goals of the LHCb upgrade



Instantaneous luminosity:


 $4\times 10^{32}~(\mbox{Run}~2) \rightarrow 2\times 10^{33}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}$

- L0 rate limit of 1 MHz saturates fully hadronic modes already in Run 2 (higher rate \Rightarrow higher $p_{\rm T}$ thresholds)
 - The only solution: read full event at bunch-crossing rate and apply track reconstruction/IP selections.
- Upgrade/replace subsystems:
 - Cope with higher occupancy.
 - Faster/higher precision tracking
- Fully replace DAQ and trigger.

LHCb upgrade

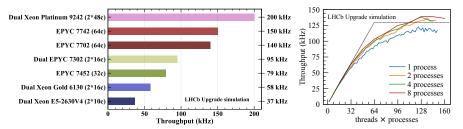
Upgraded LHCb DAQ

©CPPM

- Event rate: 30 MHz non-empty bunch crossing
- Event size: \sim 100 kB
- Input bandwidth: 40 Tbit/s

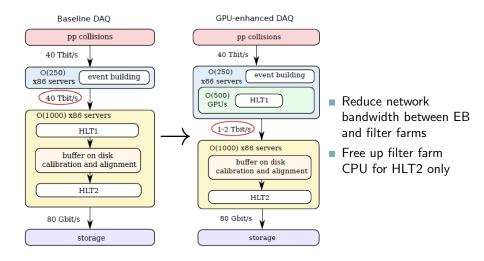
- New PCIe40 readout boards
 - 24 optical inputs, PCIe interface
- Event builder network using commercial technology
 - HDR InfiniBand© with remote direct memory access

HLT1:


[LHCb upgrade computing TDR]

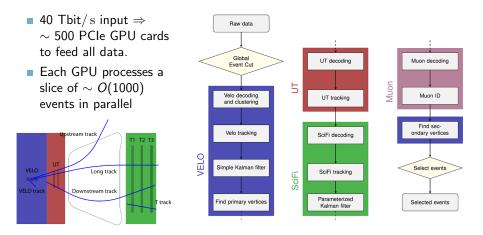
- Subdetector reconstruction:
 - VELO: clustering, tracking, vertex reconstruction
 - UT, SciFi: tracking
 - Muon: Hit-track matching
- Global event reconstruction:
 - Track fit (Kalman filter)
 - Reconstruction of secondary vertices
- Selections:

- [LHCb-PUB-2019-013]
- Single displaced tracks
- Two-track displaced vertices
- Single displaced muons
- Low-mass displaced two-muon vertices
- High-mass dimuons


HLT1: performance on CPU

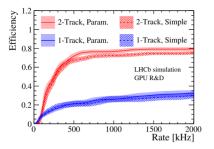
HLT1 track reconstruction performance is measured with various multicore/multithreaded CPU (Intel Xeon, AMD EPYC)

Name	Cores	Freq	L3	TDP	#CPU, Boost?	HLT1
ivame	Cores	(GHz)	(MB)	(W)	#CFU, boost?	evts/s
EPYC 7302	16c/32t	3.0/3.3	128	155	2, no	95k
EPYC 7452	32c/64t	2.35/3.35	128	155	1, no	79k
EPYC 7702	64c/128t	2.0/3.35	256	200	1, no	140k
EPYC 7742	64c/128t	2.25/3.4	256	225	1, yes	150k
Xeon E5-2630V4	10c/20t	2.2/3.1	25	85	2, yes	37k
Xeon Gold 6130	16c/32t	2.1/3.7	22	125	2, yes	58k
Xeon Platinum 9242	48c/96t	2.3/3.8	77	350	2, yes	200k


HLT1: GPU-accelerated trigger?

Project currently under review, decision in the next months

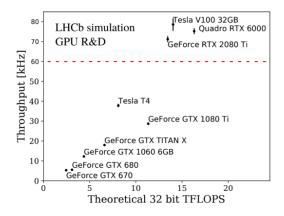
Allen project: HLT1 on GPU


Framework for GPU-based execution of an algorithm sequence [GitLab repo]
Based on C++17, CUDA v10.2, boost, ZeroMQ

Allen project: HLT1 performance

[arXiv:1912.09161]

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
High- p_T muon	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

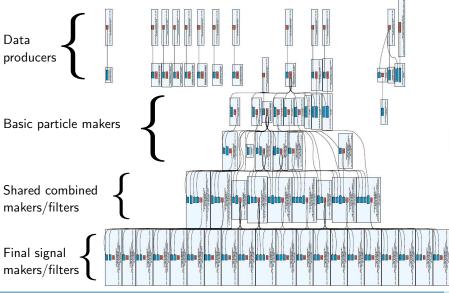

Rates of HLT1 lines on minimum bias events

Efficiency of 1-Track and 2-Track selections with $B^0_s \to \phi \phi~{\rm MC}$

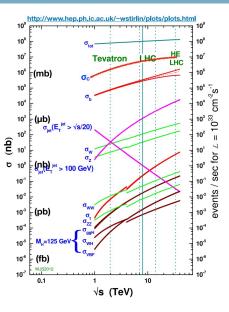
Signal	GEC	TIS -OR- TOS	TOS	$\operatorname{GEC} \times \operatorname{TOS}$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$	89 ± 2	91 ± 2	89 ± 2	79 ± 3
$B^0 \to K^{*0} e^+ e^-$	84 ± 3	69 ± 4	62 ± 4	52 ± 4
$B_s^0 \to \phi \phi$	83 ± 3	76 ± 3	69 ± 3	57 ± 3
$D_s^+ \to K^+ K^- \pi^+$	82 ± 4	59 ± 5	43 ± 5	35 ± 4
$Z \rightarrow \mu^+ \mu^-$	78 ± 1	99 ± 0	99 ± 0	77 ± 1

Efficiencies of HLT1 selection for benchmark signals

Allen project: HLT1 performance

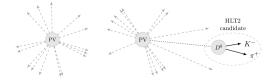


HLT1 throughput for various GPU cards.


 $60\,\rm kHz$ is the miminum requirement for $30\,\rm MHz$ imput rate and 500 GPU cards

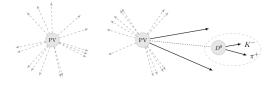
HLT2 selections

Exclusive HLT2 selections are being developed based on Run 2 selections.



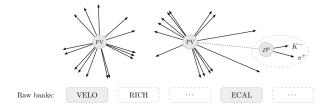
HLT2 output rate

- At $\mathcal{L} = 2 \times 10^{33} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$: O(10) MHz charm + O(1) MHz beauty rate
- Output bandwidth limited to 10 GB/s. Up to 100 kHz with full event size of 100 kB.
- Need to reduce the event size for higher rate


Selective persistency: write out only the "interesting" part of the event.

- Turbo stream:
 - Miminum output: only HLT2 signal candidates

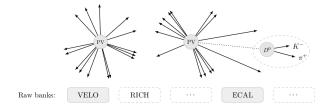
Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size O(10) smaller than RAW


Selective persistency: write out only the "interesting" part of the event.

- Turbo stream:
 - Miminum output: only HLT2 signal candidates
 - Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size O(10) smaller than RAW

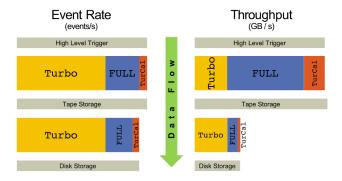
Selective persistency: write out only the "interesting" part of the event.



- Turbo stream:
 - Miminum output: only HLT2 signal candidates
 - Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc.

- Advantage: Event size O(10) smaller than RAW
- FULL stream: all reconstructed objects in the event
 - + selected RAW banks


Selective persistency: write out only the "interesting" part of the event.

- Turbo stream:
 - Miminum output: only HLT2 signal candidates
 - Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy searches)

Limitations: cannot refit tracks and PVs offline, rerun flavour tagging etc. Advantage: Event size O(10) smaller than RAW

- FULL stream: all reconstructed objects in the event
 - + selected RAW banks
- TurCal stream: HLT2 candidates and RAW banks
 Used for offline calibration and performance measurement

Rate and bandwidth to tape

stream	rate fraction	throughput (GB/s)	bandwidth fraction
FULL	26%	5.9	59%
Turbo	68%	2.5	25%
TurCal	6%	1.6	16%
total	100%	10.0	100%

Disk bandwidth

stream	throughput (GB/s)	bandwidth fraction
FULL	0.8	22%
Turbo	2.5	72%
TurCal	0.2	6%
total	3.5	100%

Summary

- LHCb upgrade ongoing, Run 3 to start in 2021
- Aim to increase instantaneous luminosity to $2 \times 10^{33} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$ (5 times pre-upgrade).
 - Collect 50 fb⁻¹ by 2023
- Major redesign of readout and trigger in LHCb upgrade.
- Remove hardware L0 stage, read out full detector at 30 MHz non-empty bunch crossing rate
- Readout and event builder farm: consolidation ongoing
- HLT filtering farm:
 - Architecture of split trigger with disk buffer, alignment and calibration \Rightarrow offline-quality output.
 - Option to run HLT1 stage on GPU in the event builder farm under investigation.
 - HLT2 selections under development.
 - Increase physics output by moving most of bandwidth to Turbo stream (reduced size, no RAW information).