Radiation stability and hyperfine mode structure of the terahertz NovoFEL

V. V. Kubarev^{1,2}, Ya. V. Getmanov^{1,2}, O. A. Shevchenko¹

¹ Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russian Federation ² Novosibirsk State University, Novosibirsk, Russian Federation

SFR-2020, Novosibirsk, 13-17 July, 2020

Contents

• Introduction:

- Three types of coherency and spectral structure in FELs
- Unstable resonance and stabilized regimes of the NovoFEL

• Experiments:

- Instruments and methods (resonance Fabry-Perot interferometer)
- Parameters of hyperfine spectral structure of the terahertz NovoFEL
- Hyperfine spectral structure of the terahertz NovoFEL in resonance and stabilized regimes
- Conclusion

Free-electron LASER Stimulated Emmission

Three types of coherency and spectral structure in FELs

1) Hyperfine coherency – coherency between pulses radiated by one intra-cavity pulse: modulation $\Delta v = c / 2L_0$

The all coherencies are independent. Hyperfine coherency is present a priory.

Radiation parameters of the NovoFEL

Laser	Terahertz	Far-Infrared	Infrared
Status	In operation since 2003	In operation since 2009	In operation since 2015
Wavelength, μm	<mark>90 – 240</mark>	37 – 80	8 – 11 (7–30)
Relative spectral width (FWHM), %	<mark>0.2 – 2</mark>	0.2 – 2	0.1 – 1
Monochromaticity	<mark>2·10⁻⁸</mark>		
Maximum average power, kW	<mark>0.5</mark>	0.5	0.1 (1)
Maximum peak power, MW	<mark>0.9</mark>	2.0	10
Pulse duration, ps	<mark>70 – 120</mark>	20 – 40	10 – 20
Pulse repetition rate, MHz	<mark>5.6; 11.2; 22.4</mark>	7.4	3.7
Polarization	Linear, > 99.6 %		
Beams	Gaussian beams with diffraction divergence		

Typical radiation regime of THz NovoFEL 178 ns & *f* = 5.6 MHz a 100 ps Δt, with 1 pulse in optical resonator is continuous 5.6-MHz train of 100 ps pulses: t *f*=5.6 MHz Fourier transform of coherent laser pulses: Hyperfine mode structure with $2/\Delta t \approx 6 \text{ GHz}$ $\Delta v = f = c/2L_0 = 5.6$ MHz Number of intracavity pulses: m = 1 4 2 11.2 MHz 22.4 MHz 5.6 MHz

Three operating regimes of THz NovoFEL. Intra-pulse coherency

Detuning between electron and light pulse frequencies $\Delta f/f$ (kHz)

Resonance (unstable) and stabilized regimes of the NovoFEL

Two types of sideband modes **Resonance (unstable) regime:** 20 1 cm⁻¹ Side-band instability Detuning of electron and light pulse on trapped electrons 30 GHz 0.2 cm⁻¹(6 GHz) 15 repetition frequencies $\Delta f/f = 0$ Intensity (arb.u.) Modulation instability P= Max 10 Two types of side-band (modulation) 5 instabilities Coherency length < pulse length 0 65 66 67 68 69 64

Wavenumber (cm⁻¹)

Stabilized regime:

Detuning of electron and light pulse repetition frequencies $\Delta f/f \approx 2.5 \cdot 10^{-5}$

 $P \approx Max/2$

Side-band (modulation) instabilities are fully suppressed

Coherency length > pulse length

Resonance (unstable) and stabilized regimes of the NovoFEL

Two types of sideband modes **Resonance (unstable) regime:** 20 1 cm⁻¹ Side-band instability on trapped electrons Detuning of electron and light pulse 30 GHz 0.2 cm⁻¹(6 GHz) 15 repetition frequencies $\Delta f/f = 0$ \leftarrow Intensity (arb.u.) Modulation 1:1000 instability P= Max 10 Two types of side-band (modulation) 5 instabilities Coherency length < pulse length 0 65 66 67 68 69 64 Wavenumber (cm⁻¹)

Stabilized regime:

Detuning of electron and light pulse repetition frequencies $\Delta f/f \approx 2.5 \cdot 10^{-5}$

 $P \approx Max/2$

Side-band (modulation) instabilities are fully suppressed

Coherency length > pulse length

Resonance (unstable) and stabilized regimes of the NovoFEL

Ultra-long resonance waveguide vacuum Fabry-Perot interferometer (2017)

Modified optical resonator of universal gas laser

9

ν

Hyperfine spectral structure of the NovoFEL

Typical regime of the NovoFEL: 1 pulse inside optical resonator

Hyperfine spectral structure of NovoFEL radiation

Hyperfine spectral structure of the NovoFEL: Pure TEM_{α 00}-modes

NovoFEL lines (longitudinal modes) $\Delta v/v \le 5.10^{-8}$ ($\Delta v \le 100$ kHz) – upper estimate.

 $(\Delta v/v)_{\text{max}} = \lambda / (\text{Quality of passive optical resonator } \times 2 \text{ optical resonator length}) = \lambda / (Q \cdot 2L) = 2 \cdot 10^{-7}$ $(\Delta v/v)_{\text{min}} = \text{Schawlow-Townes limit for lasers} = \lambda / (Q \cdot 2L \cdot N) = 2 \cdot 10^{-21}; N - \text{number of photons in optical resonator (10¹⁴)}$ $(\Delta v/v)_{\text{min}} = \text{For free-electron lasers} = N_e / N_e^2 = 1 / N_e = 10^{-10}; N_e - \text{number of electrons in pulse (10¹⁰)}$

Main task here is measuring of real monochromaticity of the hyperfine lines.

Gold meshes with maximal density can increase FPI resolution (fineness) in 4 times only compare to present nickel meshes. We need to go from frequency-domain to time-domain.

Real parameters of hyperfine spectral structure of the NovoFEL

Hyperfine spectral structure of NovoFEL radiation in regimes with imperfect electron beam

Transverse modes are much more intense in the resonance regime compared with the stabilized one

Phase of TEMqnm - mode:	$\Phi(n,m,z) = (n+m+1) \cdot \operatorname{atan}(z/L_R)$
Transverse mode indexes:	n – horizontal, m – vertical
	L_R – Rayleigh length

The reasons: 1) Low-energy tail in electron beam \rightarrow Turning magnet \rightarrow Vertical angles \rightarrow Excitation of vertical transverse modes 2) Non-axial input of electron beam in undulator \rightarrow Vertical betatron oscillation of electron \rightarrow Excitation of vertical transverse modes

Conclusion

- The hyperfine structure of the NovoFEL with a line monochromaticity of 2.2·10⁻⁸ was measured (coherency length is 7 km, number of coherent output pulses is 140)
- There is no fine mode structure or coherency between different pulses inside the optical resonator of the NovoFEL
- Hyperfine structure is practically single-mode and the same in resonance and stabilized regime for perfect electron beam
- Hyperfine structure has intense transverse modes for imperfect electron beam. The power of the transverse modes increases significantly in resonance regime.

Thank you for your attention !

One-mode selection by three resonance Fabry-Perot interferometers

