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Abstract. The propagation length of surface plasmon polaritons (SPPs) increases with increasing wavelength, which 

makes it possible to use radiation from the far-infrared and terahertz ranges to create communication devices employing 

SPPs as carriers of information. In this paper, we consider methods for implementing the multiplex transmission of 

information along cylindrical conductors using a combination of SPPs with orbital angular momentum and present 

experimental setups for the experiments on Novosibirsk free electron laser. 

INTRODUCTION 

It is known that a combination of beams with orbital angular momentum ("vortex " beams) that are propagating 

in free space can be used to create a multiplex communication channel for data transmission [1,2]. Such a possibility 

was demonstrated experimentally in the visible [3], radio-frequency [4], and millimeter [5] ranges. One can assume 

that multiplex plasmon communication systems can be created in a similar way. In this case, the signal will be 

transmitted over cylindrical conductors using surface plasmon polaritons (SPPs) bearing an orbital angular 

momentum (OAM). To confirm or refute this assumption, it is necessary to conduct "proof-of-principle " 

experiments to demonstrate the possibility of generation of vortex plasmons, examine the preservation of their 

orbital angular momentum during propagation, as well as to develop methods for decoding of signal consisting of a 

sum of SPPs with different orbital momenta. 

In the visible range, the length of path of surface plasmon polaritons, which are also called surface 

electromagnetic waves, is only tens of microns (see., e.g., [ 6]). For this reason, it is convenient to start with 

investigating plasmon communication devices in the most convenient terahertz range, in which the plasmon 

propagation length is several tens of centimeters on plane surfaces [7] and wires [8]. In this paper, we investigate the 

first part of this problem: generation of vortex SPPs on cylindrical conductors. We consider three possible methods 

of their generation, perform parametric analysis of devices intended for experiments in the terahertz range, and 

describe experimental setups to perform experiments on the Novosibirsk free electron laser. 

PLASMONS ON PLANE AND CYLINDRICAL CONDUCTORS 

Plasmons have been well studied in the visible and mid-infrared ranges. The measured characteristics of SPPs 

are in good agreement with calculations performed under the Drude theory, according to which the propagation 

length of plasmons have to increase as the square of the wavelength. However, measurements of paths of plasmons 

on plane surfaces in the terahertz ranges turned out to be significantly lower than the calculated ones, both in early 

[7-9] and modern studies (see, e.g., [10-12]). Radiation losses and ohmic losses exceeding the calculated ones were 

offered as possible causes. 



The interest in terahertz plasmons on cylindrical conductors was renewed due to, among other things, the 

possibility of lowering the ohmic loss by reducing the proportion of plasmon electromagnetic field in the conductor 

[13, 14]. Characteristics of plasmons, as shown in theoretical work [15], strongly depend on thin layers of dielectrics 

deposited on the wire, which makes it possible to use SPPs for diagnostics of coatings. Making a relief on the 

surface of the wires, e.g., annular grooves, enables control of the dispersion curve of plasmon (in this case, spoof 

plasmon) and its stronger coupling with the surface, as well as focusing the electromagnetic field on the tips. This 

possibility was demonstrated by calculations in [16-17]. In [18-20], it was proposed to generate plasmons with 

orbital angular momentum using cylindrical conductors with subwavelength screw thread. Numerical calculations 

were performed in the approximation of ideal conductor. Only one attempt was made to experimentally verify the 

possibility of obtaining vortex plasmons [20], which showed that the absorption resonances of broadband terahertz 

radiation were at the frequencies predicted by calculations, but no direct measurements of the plasmon field 

distribution were done. In [21] it was proposed to use a binary helical axicon generating a Bessel beam of the first 

order for excitation of plasmons at the end face of cylindrical conductor, but no experiments were carried out either. 

  

In our previous works [22-23], we have formed Bessel beams (BBs) of the first and second orders with orbital 

angular momentum by transforming a Gaussian beam of the Novosibirsk free electron laser [24,25] using binary 

phase axicons with spiral zone structure [26]. In this paper, we use several versions of optical schemes with axicons 

to generate vortex plasmons.   

GENERATION OF VORTEX PLASMONS USING AXICON AND CYLYNDRICAL 

GRATING 

In the first case (Fig.1a), we use the axicon not as a device to form a Bessel beam, rather as a phase diffraction 

grating. A beam that passed through a zero-order axicon (l = 0) with annular zones forms plane waves conically 

converging to the axis in the minus first diffraction order. In free space, intersecting, they would form a Bessel beam 

of zero order. If a reflective cylinder with annular thread is installed on the optical axis, then these waves are 

diffracted on the grating, reflecting in the planes intersecting the z-axis. If the thread is made reflective in the 

direction along the surface of the cylinder, then we get a cylindrical equivalent of grating with blazing angle 

(cylindrical echelette). In the case of spiral axicon (Figs.1b and 1c) the conical wavefront will also rotate. By 

matching the lattice period with the wavelength, one can direct the diffracted wave along the surface of the grating 

and forms SPPs on the surface of a replaceable cylinder attached to the grating.   

Figures 1a, 1d, and 1e show possible configurations of receiver grating. It is obvious that the plasmon capture 

efficiency will be the highest for blazing angle gratings that reflect the first order of diffraction along the z-axis. The 

grating in Fig.1d will be less efficient, but easy to manufacture, and the grating in Fig.1e will enable taking the 

uncaptured radiation away from the detector.  

The mth order diffraction angle of the axicon is (see notation in the figure) 

 sin /m m p   (1) 

Diffracted beams fall on a coaxial grating at an angle / 2i m    . Then the length of the illuminated part of 

cylindrical grating is equal to 
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At diffraction of wave falling on a cylindrical grating to the qth order by the angle / 2s  , the condition of 

generating a plasmon is determined by the law of conservation of momentum: 
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where ( / )sinz ik f c   is the longitudinal component of the incident radiation, c is the speed of light, / 2sk v    

is the plasmon wave number on a smooth surface, ν is the speed of the plasmon,  is the radiation angular 

frequency, and T is the period of the cylindrical grating. In the terahertz range, the speed of the plasmon ν practically 

does not differ from the speed of light in vacuum (ν ≈ c); therefore, condition (3) takes the following form [27]:  
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FIGURE 1. Generation of surface plasmon polaritons using binary phase axicon and cylindrical diffraction grating; (b) and (c) 

phase functions of binary phase axicons that form Bessel beams of first kind of first and second orders (l = 1 and 2), black and 

white colors corresponding to phase value of 0 and  , respectively; (d) and (e) versions of cylindrical grating relief 

 

Using (1) and (4), we obtain two relations connecting the axicon and grating parameters 
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Since for a binary phase axicon, the diffraction efficiency is the highest for the first diffraction order (~ 41 % in 

the minus first order), we must put 1m  in expression (5).  

For both an axicon and a cylindrical grating, acceptable parameters are obtained with an incidence angle

/ 4i m     . The cylindrical grating is phase reflective. When a rectangular-profile grating is used, the reflection 

maximum will be in the zero order, that is, in the specularly-reflected beam. To obtain the highest diffraction in the 

1q  order at the angle / 2s   , it is necessary to use a grating with a blazing angle equal to / 8 . 

 
TABLE 1. Parameters of axicons and cylindrical gratings for generating plasmons at various wavelengths. 

λ, µm 
Silicon axicon (n=3.42) Cylindrical grating with blazing angle 

p, µm h1, µm M T, µm h2, µm N 

141 199 29,1 85 480 199 35 

47 68 9,9 253 163 68 104 

8.5 12 1,76 1416 29 12 586 

 

Parameters of axicons and cylindrical gratings that satisfy Eqs. (5) are given in Table 1, where 
1h  and 

2h is the 

profile depth of the silicon axicon and metal grating, respectively, and M and N are the numbers of periods. Modern 

technologies enable manufacture of both silicon axicons and cylindrical gratings with the parameters given in the 

table.  

GENERATION OF VORTEX PLASMONS BY DIFFRACTION ON CONDUCTOR END 

FACE 

Generation using Bessel beam 

Another way of excitation of vortex plasmons is shown in Fig.2a. A Gaussian beam with a wavelength 
illuminates a silicon axicon with a spiral zone structure. The depth of the relief is  



 / 2( 1),h n    (6) 

where n is the refractive index of the axicon material. Passing through the axicon, the beam transforms to the Bessel 

beam, the electric field of which is described by the expression 
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       , r is the radius, and  is the azimuthal angle. Bessel beams have a 

“helical” wavefront, consisting of nested helicoidal surfaces, the number of which is equal to the topological charge 

0,1, 2, 3, ...l  . The spiral grating period p determines the value of the transverse wavenumber 2 / p  of the 

Bessel beam. 

 

FIGURE 2. Generation of surface plasmon polaritons using binary phase axicon by end-fire coupling technique: (a) generation 

directly by Bessel beam; (b) generation in focal plane of lens; (c) and (d) amplitudes of second-order BB field and its Fourier 

image in comparison with distribution of amplitude of SPP field on cylinder. 1 – Gaussian beam, 2 – silicon binary axicon, 3 – 

Fourier image of BB of second order in focal plane of lens 

 

The ideal BB is a superposition of plane waves conically converging to the optical axis. In a real experiment, the 

axicon (circular or spiral diffraction grating) is limited in the diameter. Consequently, a quasi-Bessel beam exists 

only in the zone of intersection of waves bounded by the radii 
1R and

2R , where 
1R  is the outer radius of the axicon, 

and
2R  is the inner radius rays from which still get on the cylindrical grating (Fig.2) . At the distance  
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where the diffracted waves of the minus first order from the opposite sides of the axicon completely intersect, a BB 

is formed with the intensity distribution shown in Fig.2a (inset 3). Note that a BB with a constant cross section, 

which is commonly called non-diffractive, begins to form at the point 
1Z and decays after 

2Z  (see details in [23, 

28]).  

The axicon period is linked with the radius of the maximum intensity of the first ring max

lr by the following 

relation:  

 
max max2 / 2 / ( )l lp r r      (10) 

where the 
max( )lr  values are given in Table 2, and the radius of the coupler (the receiving element of the 

waveguide) should be matched with the 
max

lr value: 
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The coupler in Fig.2 was chosen to be concave-convex to prevent the scattered free wave from getting into the 

region of propagation of plasmons and on the detectors that measure their intensities.  

TABLE 2. Bessel function values 
maxr  that correspond to first maxima of functions of order l.   

l  0 1 2 3 4 5 
max( )lr  0 1,8 3,2 4,3 5,4 6,4 

 

It follows from expressions (10) and (11) that the radius of Bessel beam does not depend on the wavelength for a 

given topological charge if the axicon period does not change. That is, the same phase axicon will form a BB with 

the same intensity distribution at any wavelength. However, it is worth noting that the diffraction efficiency is 

maximal at the calculated wavelength (41 %) and decreases with divergence from it. Nevertheless, for a source with 

a continuously tunable wavelength, like the Novosibirsk free electron laser, this property of binary axicon is very 

useful.  

If axicons are manufactured with the same period p  for all orders l, the radius of rings of the Bessel beams will 

be proportional to the max( )lr values from Table 2, and the distance 
0Z in the paraxial approximation will be 

inversely proportional to the wavelength. That is, when generating plasmons by the scheme in Fig.2, to ensure high 

efficiency for each topological charge, it is necessary to change the coupler radius and move the coupler along the 

axis. Another option is varying the periods of axicons of different orders in inverse proportion to the values given in 

Table 2. In this case, one coupler can be used to generate vortex plasmons with beams of different orders.  

Obviously, the plasmon that arose during BB diffraction on the end face of the coupler will preserve the 

azimuthal component of the angular momentum of the incident radiation, and its total wave vector will “slip” along 

the helix on the surface of the cylinder. Note that only a p-polarized wave can excite a plasmon. Therefore, the 

capture efficiency is maximal if the radiation falling on the axicon is polarized along the normal to the surface (see, 

e.g., [29-31]). In the case of cylinder, the plasmon exciting radiation must be radially polarized. Such a beam can be 

obtained, e.g., by interference of two Hermit-Gaussian beams in the Mach-Zehnder interferometer [32] or using a 

sectional polarizer.  

Generation of plasmons using “perfect” vortex beams” 

The value of the overlap integral can be made large enough by illuminating the end face of the conductor 

through an additional lens (Figs.2b and 2d) with a focal length f. In this case, the Fourier image of the Bessel beam 

is formed in the focal plane of the lens. As known, it is a ring with the radius  

 /Fr f p   (12) 

which is the same for any l if the axicon period is the same. By changing lenses with different focal lengths, one can 

easily "fit" the ring radius to the radius of the coupler, thus creating the so-called “perfect” vortex beams. For 

example, for a wavelength of 141 μm and a period of 3.1 mm, the ring radius at a focal length of 50 mm will be 2.3 

mm, and at a wavelength of 47 μm, the same radius will be obtained with a lens with a focal length of 150 mm.  

From inset 4 in Fig.2b one can see that the Fourier image of the beam generated by the binary phase axicon is 

not a continuous ring, as it should be for an ideal beam or in the case of using a multilevel phase element with 

concentric relief of zones [27]. In our case, the image consists of fragments of nested spirals with alternating phases. 

This fact is confirmed by both calculations and experiments (see, for example, [23, 37, 38]). This form of ring 

ruptures in the case of binary spiral axicon is because its phase dependence is a piecewise constant function: 

 ( , ) ( / 2)sgn(sin( ))r r l        (13) 

At a fixed radius constr  , it has 2l  zeros at the azimuth angle variation within 2 . An obvious way to obtain 

a ring Fourier spectrum is to use a kinoform spiral axicon. Nevertheless, such axicon is difficult to manufacture and 

is designed for one wavelength, whereas the beam quality and properties are much the same as those of ideal Bessel 

beam, as shown in [28]. 

Summing up the section, we can say that a binary phase axicon is paradoxically more convenient than a 

kinoform one and enables easy variation of the experimental conditions. 



FITTING OF AXICONS AND COUPLERS PARAMETERS 

In the oncoming experiments, one of the most important tasks is to study the conservation of the orbital 

momentum of vortex plasmon during its propagation along a wire. Given the finite length of plasmon propagation, 

one of important requirements is the exciting of plasmons with a large twist angle. For this, it is necessary to 

coordinate the axicon parameters and the diameter of the cylindrical sample and to ensure a plasmon “twist” 

sufficient to be noticeable throughout plasmon propagation along the conductor. Since the twist angle and the vortex 

beam radius depend on many parameters of the above devices, it becomes necessary to derive analytical expressions 

relating them, which are necessary for planning the experiments. Below we present the relevant calculations made 

for the wavelength range of 8–141 μm, which corresponds to the spectral range in which the generation line of the 

Novosibirsk free electron laser can be tuned. 

Let a Gaussian beam illuminate a spiral phase axicon with a period p ,which generates an axisymmetric Bessel 

beam with OAM and is described by expressions (7) and (8). The trajectory of the Poynting vector is a two-

parameter spiral [39]: 
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with the increment 
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the value of which grows for peripheral areas as 2r . That is, the inner rings of the Bessel beam rotate much faster 

than the outer ones. Let us calculate the angle of rotation of the Poynting vector trajectory per unit length of the 

beam optical axis for the first rings of the Bessel beams created by the binary phase axicons. Differentiating the 

right-hand expression in (14) and assuming that p  , we obtain  
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The angle of inclination of the Poynting vector trajectory to the z -axis on a cylindrical surface with a radius r  is 
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We are interested in the Poynting vector direction in the first maximum of the Bessel function the radius of which is  

 ( , ) ( ) / ( ) / 2l ll p r r p      , где 
max( , )l p r  . (18) 

Substituting the values of the argument ( )l of the Bessel function [40, P.201], we construct the graph shown in 

Fig.3 (black dots). For further estimates, it is sufficient to approximate it with a linear function ( )F l  , where l  is an 

integer:  

  ( ) (1,244 0,026)lF l l   . (19) 

Then radius (18) of the first maximum of Bessel beam can be approximated with the expression 

 
( )

( , ) 0,20 ( / ),
2

F l p
l l p   


   (20) 

and expression (17) will take the form 
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FIGURE 3. Values of ( )l  (dots) and their approximation ( )F l  (straight line) as a function of modulus of topological 

charge l  (see Table 2) 

 

Thus, for the Poynting vector angle to the optical axis for the first Bessel rings we obtain in our approximation 

expression (21), independent of the topological charge value and up to a factor coinciding with the classical 

diffraction formula ~ / p   . 

Let us simplify expression (9) to the following form: 
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Expressions (20)–(22) make it possible to link the Bessel beam radius, the Poynting vector angle, and the distance at 

which the beam is formed. All of them depend on the parameter /p  , and only the radius is also dependent on the 

wavelength and value of the topological charge l . The dependences of these quantities on the ratio /p  are shown 

in the graph presented in Fig.4. 

 

 

FIGURE 4. Main parameters of Bessel beams formed using spiral phase axicons (see expressions (12), (20)–(22)) vs. ratio of 

axicon period to radiation wavelength at 141 and 8.5 μm 

 

This graph enables selection of optimal parameters of axicon. The radius of the first ring of the Bessel beam is given 



for wavelengths of 8.5 and 141 μm and modules of topological charges 1,3,9l  . One can see that an acceptable 

slope of the Poynting vector (of the order of several degrees) is achieved at the ratio /p  in the range of 4 to 10. In 

addition, for the terahertz range and large l, the radius of the first Bessel ring lies near one millimeter, while for the 

mid-IR range it is near 100 μm. 

The intersection of the green and brown lines at / 14p    in the graph is of particular interest. It corresponds to 

the equality of the radius of the Bessel beam first maximum (at 141   μm and 9l  ) to the radius of “perfect” 

vortex beam obtained from the same beam using a lens with 50f   mm. The radius is 3.5 mm. The angle  is still 

quite large (≈ 0.053 rad), and the distance at which the BB is formed, 
0 220Z  mm, is also convenient for 

experiments. 

EXPERIMENTAL DEVICES 

Studies on the generation of vortex plasmons have been started at one of the user stations of the Novosibirsk free 

electron laser. All three schemes presented above have been realized experimentally. The beams were formed using 

silicon axicons with holes and without holes (Figs.5a–5c). Various cylindrical elements were used as axisymmetric 

objects along which plasmons propagated (Fig.5d). To make high-quality surfaces, the samples were prepared on a 

numerically controlled machine. The manufactured set of bodies of revolution (with dielectric coating, gratings with 

blazing angle, etc.) makes it easy to modify experimental setups. 

 

 

FIGURE 5. (a) Spiral binary phase axicons used for forming Bessel beams with topological charges l =0, ±1, and ±2 at 

wavelength of 141 μm; (b) and (c) axicon forming Bessel beam with l =±5 at wavelength of 8.5 μm; (d) and (e) snapshots of set 

of elements for assembling axisymmetric waveguides 

 

 

FIGURE 6. a) Binary spiral phase diffraction grating (silicon axicon) with back side exposed to FEL radiation, coupled to 

cylindrical echelette and axisymmetric brass waveguide; (b) system for studying excitation and transport of SPPs by end-fire 

coupling technique; (c) the same system with addition of lens for studying Fourier spectrum of radiation diffracted from rear end 

face of waveguide. Detector: microbolometric array 



As an example, Fig.6 presents several assembled structures to explore the capture and transportation of 

plasmons. Figure 6a shows a system corresponding the scheme shown in Fig.1. On this device, experiments are 

conducted at a wavelength of 141 μm. The parameters of the axicon and cylindrical brass grating are given in the 

first line of Table 1. The cylindrical grating was screwed to the axicon using a hole drilled in the axicon, like that in 

the plate shown in Fig.5b. Smooth axisymmetric waveguides can also be connected to the grating to explore 

propagation of plasmons, which are expected to occur if the parameters of the exciting wave, axicon, and grating are 

matched correctly. In the experiments, lattices and cylinders, both uncoated and coated with a ZnS layer 1 μm thick, 

are used. Our previous experiments have shown that dielectric layers improve the coupling of SPPs with the surface.  

Figure 6b presents the optical system corresponding to Fig.2a. In this case, plasmons are excited by the end-fire 

coupling technique at diffraction of Bessel beams on the end face of metal waveguide. The waveguides, consisting 

of screwed-up parts, are supported by polypropylene films stretched over ring supports; the thickness of the films is 

much less than the wavelength and they have a whole on the axis. It has been shown in [37] that SPPs passing 

through thin films obey the same laws as a free wave does. Figure 6c shows another embodiment of the end-fire 

coupling technique, when the Fourier spectrum of the radiation from the end of the waveguide is recorded by a 

microbolometric detector array with the use of f-f focusing system. Recording of the Fourier spectrum enables 

derivation of the angular spectrum of radiation. This feature will be useful for studying the degree of twist of 

radiation diffracted from the exit end face. In various versions of experimental setups, either a high-sensitivity 

microbolometric detector array with a small matrix size (16.32x12.24 mm) or a less sensitive Pyrocam IV with a 

matrix size of 25.6x25.6 mm is used as the image recorder in both the terahertz and mid-infrared ranges. 

The NovoFEL shutdown because of the pandemic suspended the studies at the initial stage. We hope to present 

the first physical results soon after the resumption of the installation operation. 

SUMMARY 

Two methods for generating ring surface plasmon polaritons (SPPs) using high-order Bessel beams are shown. 

In the first method, free radiation is transformed into an SPP using a binary phase axial grating which illuminaties a 

cylindrical diffraction grating connected to a cylindrical waveguide. The second method uses the diffractive 

coupling of a Bessel beam to an axisymmetric conductor. In this case, as an option, before the capture, a lens can 

first transform the beam to form an annular vortex beam at its focus. After passage through the waveguide, the mode 

composition of the beam is decoded, for example, using diffractive optical elements, and each communication 

channel has an individual detector. Devices that implement these methods has been demonstrated. 
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