

Features of using of the hard X-rays (60 – 120 keV) of synchrotron radiation for determination the trace concentrations of rare-earth and heavy elements by the SRXRF method

Outline

- **BEAMLINE №8 (VEPP 4M)**
- **Experiment layout for X-ray fluorescence (monochromator, detector, etc.)**
- **SRXRF** experimental setup at the beamline № 8 (VEPP 4M)
- Experimental results SRXRF obtained on the excitation energy 60, 72, 86, 112 keV
- Measurements with compound parabolic crossed polymeric refractive lens at the beamline № 8 (VEPP- 4M)
- **Conclusion**

BEAMLINE №8 (VEPP - 4M)

Source - wiggler, B = 1.9 T (9-pole), $E_{el} = 4.5 GeV$, $I_{el} = 20 mA$

Aleksandr Legkodymov, BINP

The comparison of radiation from the VEPP-3 and VEPP-4M

Aleksandr Legkodymov, BINP

Hard X-ray Advantage REE and Heavy elements analysis

Disadvantage of <u>L series</u> analysis

- Complicated lines L (α , β , γ , I, s)
- Peak overlapping between L and K series lines

REE – Rare Earth Elements and HP - Heavy Platinoids

Emission K – lines from 33 keV to 61 keV Emission K – lines from 63 keV to 78 keV

Aleksandr Legkodymov, BINP

Experiment layout for X-ray fluorescence

monochromator parameters

length of the first crystal	40 mm	
length of the second crystal	110 mm	
distance between crystals	4 mm	
period 2d for Si (111)	6.271 A	
energy range	120 keV(1.13 ⁰) 40 keV (2.83 ⁰)	
energy resolution	3 · 10 ^{- 3}	

detector parameters

Active diameter – 13.5 mm Active area - 100 mm² Thickness (Ge) – 10.5 mm Thickness windows (Be) – 25.4 mkm

Energy [keV]	5.9	122
Resolution (FWHM) [eV]	125	460

Aleksandr Legkodymov, BINP

ΔE is shift between the elastic and the Compton peak

Aleksandr Legkodymov, BINP

SFR-2020, Novosibirsk, 13th-17th July 2020

7

Experimental results obtained on the excitation energy 60, 72, 86, 112 keV

Reference sample SGD-1A (gabbro)

600 second

Aleksandr Legkodymov, BINP

Minimum detection limits (MDL) obtained at the excitation energy of 60, 72, 86, 112 keV

Ŧ

elements

Dy

Ho Er Tm Yb

Aleksandr Legkodymov, BINP

Ba La Ce Pr Nd Sm Eu Gd Tb

1,00

0,75

0,50

0,25

Measurements with compound parabolic crossed polymeric refractive lens at the beamline № 8 (VEPP- 4M)

$$n = 1 - \delta + l\beta$$
$$F = \frac{R}{2 \cdot \delta \cdot N}$$
$$\delta \div 10^{-5} \div 10^{-8}$$

2

:0

$$\delta \div \lambda^2 \cdot \rho \div \frac{\rho}{E^2}$$

$$F \div \frac{R \cdot E^2}{\rho \cdot N}$$

Aleksandr Legkodymov, BINP

Experimental setup for the measurement of the focus of polymeric refractive lens at the beamline № 8 (VEPP- 4M)

Aleksandr Legkodymov, BINP

CMOS area image sensors for X-ray imaging

	Paramete	r
Image	size (H x V)	26 x 34 mm
Pi	xel size	20 x 20 mkm
Number o	f pixels (H x V)	1300 x 1700
Scinti	llator type	CsI (Tl)
In	terface	USB 2.0

Aleksandr Legkodymov, BINP

X-ray knife

Active diameter – 5 mm Active area - 20 mm^2 Thickness (Si) – 0.5 mm Thickness windows (Be) – 25.4 mkm Microsyst Technol (2014) 20:2031–2036 DOI 10.1007/s00542-013-2056-9

TECHNICAL PAPER

LIGA micro-openings for coherence characterization of X-rays

V. Nazmov · M. Kluge · A. Last · F. Marschall · J. Mohr · H. Vogt · R. Simon

X-ray refractive lens parameters, «produced by KIT»

Lens number	Structure number	Aperture, μm	Curvature radius, μm	Structure length, μm
1	216	40.85	4.6	127
2	157	60	6.6	164
3	129	84.6	9.8	213
4	88	128.3	15.9	312
5	75	156.2	19.4	367
6	57	214.9	27.4	484
7	45	278.6	35.4	611
8	35	369	47.6	778

Aleksandr Legkodymov, BINP

Experimental results

 $E_0 = 42 \ keV$ $F = 590 \ mm$

 $\sigma_{(vertical)} = 4.8 \, mkm$ FWHM_(vertical) = 11 mkm

Aleksandr Legkodymov, BINP

SRXRF spectrum with focused x-ray beam of 42 keV at VEPP-4M

X-ray fluorescence spectrum from the voxel behind the 11 μ m x-ray focal spot. Vertical gain factor \approx 10.

Aleksandr Legkodymov, BINP

SFR-2020, Novosibirsk, 13th-17th July 2020

15

- The SRXRF method for of the panoramic determination of the concentration of rare earth elements in geological samples on the VEPP - 4M storage ring has been developed
- The experimental values for minimum detection limits of rare earth elements from La to Lu are in the range from 100 ppb to 1 ppm
- The first experiments on focusing hard x-ray radiation on the VEPP-4M storage ring were carry out
- A focus size of 11 µm on vertical was achieved for a photon energy of 42 keV, and the use of a focused beam helps to reduce the intensity background

Thank you for your attention

Aleksandr Legkodymov, BINP