JJ X-Ray

X-Ray instruments ranging from standard slits to full beamlines

15 Jul 2020 – SKIF

The product range of JJ X-Ray

s Standard components

- Slit systems, including white beam slits with drain current capability
- Precision stages with nrad and nm resolutions
- Compound Refractive Lens systems
- G Complete beamline solutions
- G Custom designed instruments and end-stations
 - Attenuators
 - Beam Imagers and positioners
 - Mirror systems
 - Emission Spectrometers
 - Diamond crystal-based optics
 - Sample positioning stages
 - Laue monochromators

The FXE instrument at European-XFEL

JJ X-ray standard slits: Air, HV and UHV

White beam slit system

Main Features

- 1500 W with drain current reading
- 4000 W without drain current reading
- Four independent blades
- Nano-polished beam defining entity
- Relative vibration less than 25 nrad RMS
- Compact: 455 mm end-to-end

On all beamlines on the new SIRIUS synchrotron in Brazil

White beam slit system - Cooling

White beam slit system - Cooling

B: S Ter Typ Uni Tim 28-

steady-State Thermal			ANSY
nperature			
e: Temperature			
t: °C			
e: 1			
11-2018 15:18			
297.17 Max			
266.6			
236.03			
205.45			
174.88			
144.31			
113.73			
83.158			
52.585			
22.011 Min			
			•
			X
	0.000	0.050 (m)	
			7

White beam slit system – Open loop performance

Danish Science Design

8

White beam slit system - Vibration

White beam slit system - Vibration

Pink beam slit system

Main Features

- 50 W with drain current reading
- Superb long-term stability no vacuum forces influence the blade position
- Nano-polished beam defining entity
- Coating of beam defining entity possible: B4C, DLC or multilayer
- Compact: 238 mm end-to-end including reduction flanges

On all beamlines on the new SIRIUS synchrotron in Brazil

DN100 port for ionpump

Pink beam slit system – cooling setup

- Tungsten rod Gold sheet
- Slit blade
- Cobber braid
- Screw
- Cooling base
- Cooling wedge
- Screw

Item 4, 5 and 7 are silver brazed for cooling efficiency.

Danish Science Design

CRL Transfocator systems - cooled and non-cooled

We have more than 25 systems installed and in operation at 9 different facilities

APS, NSLS-II, SSRF, ESRF, LCLS, European-XFEL, CAMD, SSRF, NSRRC

- First system installed in 2006
- ^{II} 2D, 1D, Single Energy, Tunable Energy, HV, UHV, monochromatic, water cooled ...

Refractive optics at European-XFEL European MID Materials Imaging and Dynamics and turning HED High Energy Density Science electron band oton tunnel JJ X-Ray water cooled transfocator Optional space for two undulators and Julator electron dump four instruments SPB Single Particles, Clusters, and Biomolecules and SFX Serial Femtosecond Crystallography FXE Femtosecond X-ray Experiments SQS Small Quantum Systems SCS Spectroscopy & Coherent Scattering SASE 1 SASE 3 linear accelerator SASE 2 for electrons (10.5, 14.0, 17.5 GeV) 0.05 nm - 0.4 nm 0.05 nm - 0.4 nm 0.4 nm - 4.7 nm

Compound Refractive Lenses, CRL's

- Easy to align կ
- Stable, < 100x less sensitive to vibrations than mirrors* կ
- Compact Կ
- High thermal stability in the beam with a low settling time superbly fitting white beam application կ
- Be, AI and Ni lenses available from RX Optics and integrated by JJ X-Ray հ
- Single Crystal Diamond lenses available from JJ X-Ray in-house production 3rd party (Russian) կ raw diamonds welcome

1D focusing

2D and 1D focusing

*Lengeler, B. et. al. (1999). J. Synchrotron Rad. 6, 1153-1167

Water cooled UHV Transfocator for 1D and 2D lenses

I The 10 lens cassettes mounted with lenses and aligned

Water cooled UHV Transfocator vibration

Different lens materials available

- Is Example from ChemMatCARS with U-APS parameters
- GRL at 46.7 m, focus at 56.5 m, 1-95 lenses
- In Transmission vs. energy

Mati Meron, 2018

JJ X-Ray Single Crystalline Diamond Lenses

APS measurements

10

5

0

-5

-10

-15

[µm]

4.5

3.0

1.5

0.0

-1.5

-3.0

-4.5

Data on dual lenses

Lenses for synchrotron experiment

Talbot interferometry

RoC	50 µm	150 µm	225 µm	300 µm
Mean deviation RMS	(7.50 ± 1.14) μm	$(2.78\pm0.42)\mu\text{m}$	$(3.62 \pm 1.43) \mu m$	$(2.10 \pm 0.16) \mu m$
Mean deviation RMS near apex	(1.39 ± 0.19) μm	$(1.24 \pm 0.17) \mu m$	$(1.15 \pm 0.17) \mu m$	$(0.93 \pm 0.14) \mu m$
Fitted RoC of tilted lenses	(22.9 ± 0.94) μm	(72.0 ± 3.9) μm	$(104.4 \pm 3.9) \mu m$	$(144.8 \pm 6.2) \mu m$

Diamond Lens Holder alligment, Residual, R = 76.74 μ m, PV = 15.89 μ m, SDV = 1.74 μ m 150

Diamond Lens Holder alligment, Residual, R = $152.1\mu m$, PV = $24.52 \ \mu m$, SDV = $2.42 \ \mu m$

Single Crystalline Diamond Lenses APS measurements

2.1 x theoretical focus on generation II lenses

Synchrotron Beam monitoring – a JJ X-Ray and cividec collaboration

- Single crystal CVD diamond
- 2 µm gap between the pads

- Online feedback
- Full positional and angular beam characterization
- Beam intensity monitoring
- Detection of beamline and source instabilities
- Pink beam monitoring

Synchrotron Beam monitoring – a JJ X-Ray and cividec collaboration

Position measurement resolution 0.37 nm at the NanoMAX beamline at Max IV*

*https://doi.org/10.1063/1.5084683

Mirrors systems

- **G** Full granite/Invar support for improved vibrational and thermal performance
- Optics sourced from all major vendors, e.g. Zeiss, Crystal Scientific, SESO and J-Tec
- Two and one actuator benders available
- Gravity compensation for vertical bounce systems
- G Custom cooling schemes
- **ITransfer function testing included**

Questions?

The FXE instrument at European-XFEL

The JJ X-Ray team at the inauguration of European XFEL September 2017

Water cooled UHV Transfocator vibration

Different lens materials available

Attenuation for different lens materials

- Beryllium Lenses (2-40 keV)
- In Aluminium Lenses (40-80 keV)
- IN Nickel Lenses (80–150 keV)
- In Diamond (5-90 keV)

Compound Refractive Lenses or CRL's – the basics

Compound Refractive Lenses or CRL's – the basics

For a given beamline geometry the lens equation is fixed

For a given beamline geometry the lens equation is fixed

 $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$, where $f = \frac{R}{2N\delta}$

but you want to minimize N and R and to choose δ to be large or, in general, μ/δ to be small.

The geometrical aperture $2R_0$ is limited by the effective aperture D_{eff} as: $D_{eff} = \sqrt{\frac{2R}{\mu N}}$

but you want to minimize N and R and to choose δ to be large or, in general, μ/δ to be small.

The geometrical aperture $2R_0$ is limited by the effective aperture D_{eff} as:

$$D_{eff} = \sqrt{\frac{2R}{\mu N}}$$

JJ X-RAY

Water cooled UHV Transfocator box stability

- Main eigenmode at 289 Hz
- Gompact design
- 4-way freedom

Mirror Benders

Features:

- Full UHV compatibility
- Renishaw encoding
- Two moment actuation
- High bending resolution through steel moment arms
- Gravity compensation
- Twist compensation
- Characterization at ALBA metrology lab

Mirror shaping

Substrate shaping can be controlled down to few µm at little to no additional cost compared to rectangular substrates

