Pulsed wire field measurements of 38-period superconducting undulator prototype

Author: Kazantsev Fedor

Novosibirsk State University, Russia

Theory [wire-based measurement methods]

There are 3 wire-based methods. All of them are based on the similarity of the interaction of an accelerated charged beam and a conductor with an electric current with a magnetic field. The difference is which kind of current is applied to the wire:

- DC (Displacement of the wire at the ends of the magnetic device are being explored)
- AC (Resonance vibrations of the wire are being explored)
- Pulse (A wave that occurs when a short current pulse applied to the wire is being explored)

In the Pulsed method (PWM), a short (~ 1-100 μ s) current pulse, from a unit to tens of amperes, is passed through a wire. Due to the influence of a magnetic field, the wire is deformed, then the resulting deformation propagates along the wire as the acoustic wave. This wave is detected by a wire position sensor located outside the undulator. Data from the sensor directly shows the first or second integral of the field, depending on the pulse duration.

PWM

Advantages:

- Almost **no limits on magnetic device aperture**. Wire diameter is close to typical beam transverse size (0.1 mm).
- Rapid data obtaining. Measurements can be made every few seconds.
- Both transversal components can be measured simultaneously.

Disadvantages (problems):

- Wave dispersion. Signal is need to be corrected via Fourier analysis.
- Wire is very sensitive to vibrations (incl. sounds) of the environment.
- Wire sagging.

Experimental setup

Wire position sensor

Test undulator (outside the cryostat)

Parameters:

- Period \approx 3 cm
- Field amplitude = 0.75 Tesla
- K ≈ 2.2

[Raw data from wire position sensor, CuBe wire Ø200 μm]

["preparations", brass wire Ø140 µm]

Calibration curve of wire position sensor

Sensitivity – 0.283 Volts/µm

[Raw data from wire position sensor, brass wire $Ø140 \mu m$]

Время, мс [reconstructed, brass wire Ø140 μm, 30 A 10 μs pulse]

Further work

- Find the dependence of wire displacement on field amplitude and integral value
- Obtaining 1st and 2nd field integrals separately from each other

• Wire vibrations (caused by environment) suppressing:

Thank you for attention!

Note: This paper is based on my bachelor diploma work and will be continued