



### LUMINESCENT SPECTROSCOPY OF Pr<sup>3+</sup> IONS IN SOME PHOSPHATES, BORATES AND SILICATES USING X-RAY SYNCHROTRON RADIATION FROM VEPP-3 STORAGE RING

### Kiselev S.A.<sup>1</sup>, Pustovarov V.A.<sup>1</sup>, M.Bettinelli<sup>2</sup>

<sup>1</sup>Institute of Physics and Technology, Ural Federal University, 19 Mira st., 620002 Ekaterinburg, Russia

<sup>2</sup>Department of Biotechnology, University of Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona, Italy

Corresponding author: <a href="mailto:sviat-kiselev@yandex.ru">sviat-kiselev@yandex.ru</a>



- Praseodymium-ions doped luminescent materials are recently being actively investigated due to demonstration of fast interconfigurational 5d – 4f optical transitions.
- □ These transitions appear, when a sufficiently strong crystal field shifts the lowest  $4f^{1}5d^{1}$  excited state below the  ${}^{1}S_{0}$  level.
- Perfect timing and rather high emission output make researches of praseodymium impurity luminescence relevant.
- In this report we examine spectroscopic luminescent properties of some samples under excitation of X-ray synchrotron radiation.





- Inorganic scintillator materials with improved characteristics in terms of light output and timing are widely required in modern technologies such as nuclear physics, security, chemistry, space physics, medical imaging, etc.
- Pr<sup>3+</sup>-doped hosts are doubly demanded in systems working at higher count rate – they are characterized with short wavelengths and fast decay time, especially in comparison with Ce<sup>3+</sup> ions, which are widely used in modern detecting systems.



## Configuration of energy levels in Pr<sup>3+</sup> ion



# **Object and experimental details**

Polycrystalline samples of Pr<sup>3+</sup>doped KLuP<sub>2</sub>O<sub>7</sub>, Li<sub>6</sub>Y(BO<sub>3</sub>)<sub>3</sub>, LiY<sub>6</sub>O<sub>5</sub>(BO<sub>3</sub>)<sub>3</sub>, LiSrPO<sub>4</sub>, Sr<sub>9</sub>Sc(PO<sub>4</sub>)<sub>7</sub>, K<sub>3</sub>Lu(PO<sub>4</sub>)<sub>2</sub>, K<sub>3</sub>LuSi<sub>2</sub>O<sub>7</sub> were synthesized using a solid state reaction and XRD verified for phase purity at the Laboratory of Luminescent Materials, University of Verona (Italy).



- Mentioned samples were observed though measurements of decay kinetics and emission spectra upon excitation with non-monochromatic X-ray synchrotron radiation (E = 3-60 keV, pulse FWHM ~ 1 ns, frequency ~ 8 MHz) at the beamline #6 of the VEPP-3 storage ring at Budker Institute of Nuclear Physics (Novosibirsk).
- □ The pulsed cathodoluminescence (PCL) spectra and PCL decay kinetics were measured using Radan-330A pulse electron gun (E = 120 keV, pulse FWHM = 200 ps, rate 5 Hz) at University of Tartu (Estonia).













XRL spectra of studied phosphates at T = 295 K



8/14







 $Li_6Y(BO_3)_3$ :  $Pr^{3+}4f^{1}5d \rightarrow 4f^{2}$  emission







LO ~ 64.0 ph/keV

XRL spectra of studied silicates at T = 295 K

Luminescence decay kinetics with high frequency X-ray synchrotron radiation, T = 295 K

11/14



| Material                                                                                | Z <sub>eff</sub> | $\lambda_{\max}$ , nm | т, ns | d-f/f-f |
|-----------------------------------------------------------------------------------------|------------------|-----------------------|-------|---------|
| Sr <sub>9</sub> Sc(PO <sub>4</sub> ) <sub>7</sub> : Pr <sup>3+</sup> (1 %)              | 27.0             | 261; 300              | 17    | 0.12    |
| LiSrPO <sub>4</sub> : Pr <sup>3+</sup> (1 %)                                            | 36.8             | 240; 267              | 18    | 3.25    |
| K <sub>3</sub> Lu(PO <sub>4</sub> ) <sub>2</sub> : Pr <sup>3+</sup> (1 %)               | 37.6             | 270; 308              | 20    | 9.10    |
| K <sub>3</sub> Lu(PO <sub>4</sub> ) <sub>2</sub> : Pr <sup>3+</sup> (5 %)               | 37.6             | 246; 278              | 15    | 14.28   |
| KLuP <sub>2</sub> O <sub>7</sub> : Pr <sup>3+</sup> (1 %)                               | 41.6             | 258; 292              | 18    | 12.51   |
| Li <sub>6</sub> Y(BO <sub>3</sub> ) <sub>3</sub> : Pr <sup>3+</sup> (1%)                | 20.0             | 261; 305              | 17    | 0.62    |
| LiY <sub>6</sub> O <sub>5</sub> (BO <sub>3</sub> ) <sub>3</sub> : Pr <sup>3+</sup> (1%) | 32.1             | 274; 309              | -     | 0.05    |
| K <sub>3</sub> LuSi <sub>2</sub> O <sub>7</sub> : Pr <sup>3+</sup> (1%)                 | 64.9             | 279; 327              | 54    | 1.14    |

Comparative characteristics of polycrystalline samples doped with  $Pr^{3+}$  ion, T= 295 K



- Praseodymium-ions doped luminescent materials are recently being actively investigated due to demonstration of fast interconfigurational 5d – 4f optical transitions.
- □ The spectroscopic properties of praseodymium-doped phosphates, borates and silicates are studied in this report.
- Based on luminescence lifetime, *d-f/f-f* ratio and emission energy region parameters the conclusion of most perspective material for application in scintillator systems is made. In our opinion, these materials are K<sub>3</sub>Lu(PO<sub>4</sub>)<sub>2</sub>:Pr<sup>3+</sup> (5 %), K<sub>3</sub>Lu(PO<sub>4</sub>)<sub>2</sub>: Pr<sup>3+</sup> (1 %), KLuP<sub>2</sub>O<sub>7</sub>: Pr<sup>3+</sup> (1 %) and LiSrPO<sub>4</sub>: Pr<sup>3+</sup> (1 %).
- To produce the entire conclusion of material application potential a thorough analysis is needed implying studying another types of excitation and temperature research.





## Thank you for attention!

#### Acknowledgements

- The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060), Act 211 Government of the Russian Federation (contract № 02.A03.21.0006) and RFMEFI62117X0012 project.
- The time-resolved X-ray excited measurements were performed at the Shared research center SSTRC based on the NovoFEL/VEPP-4 - VEPP-2000 facilities at Budker Institute of Nuclear Physics (Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia) while using experimental equipment funded by RFMEFI62119X0022 project.
- The authors are grateful to S. Omelkov (University of Tartu, Estonia) for assisting in the measurement using a pulsed electron beam.