High Energy Photon Source (HEPS) and its status

TAO, Ye

Beamline Division of HEPS, Institute of High Energy Physics (IHEP)

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

SFR-2020 online

conference, BINP,

Novosibirsk, July 13th

Acknowledgement

HEPS Team Accelerator Division Beamline Division Technical Support Division Utility Division Civil construction Division

Supported by Central and Beijing local governments

Outline

1. Brief introduction

2. Accelerator design

3. Beamline design

4. R&D for beamline technologies

1. Brief introduction

~3 nm.rad 3rd generation low emittance < 0.3 nm.rad 4th generation

high brightness and high coherence

4th generation High-energy machine

source	GeV	emittance (pm·rad)	status	
ESRF-EBS	6.0	115	commissioning	upgrade
APS-U	6.0	42	start	upgrade
SPring-8-II	6.0	142	proposal	upgrade
PETRA IV	6.0	<20	proposal	upgrade
One in Russia	6.0	?	proposal	new
HEPS	6.0	34	Under construction	new

Y.Jiao et al, The HEPS project, J. Synchrotron Rad. (2018). 25, 1611–1618

Where - HEPS , Located in Huairou Science Campus, Northeast of Beijing. Flagship Facility in campus.

HEPS logo: a magnifying glass

When - Milestones of HEPS project

- Initiative, HEPS-Test Facility, 2010
 - •
 - •
- 04/2016, HEPS-TF approved and started
- 12/2017, HEPS CDR approved by government
- 06/2018, Review of HEPS Feasibility Study Report (FSR)
- 08/2018, Review of HEPS Preliminary Design Report
- 12/2018, HEPS FSR approved by government
- 01/2019, HEPS-TF finished
- 29/06/2019, groundbreaking

HEPS Groundbreaking on 29/06/2019

Groundbreaking Ceremony at the High Energy Photon Source in Beijing, SRN, 32(2019)40

Milestone (cont.)

- 10/2023, commissioning of the storage ring
- 01/2024, commissioning of the first batch of beamlines
- 01/2025, commissioning of the second batch of beamlines
- 12/2025, open to users

2. Accelerator design

Main parameter	Design	Test goal @ end of 2025	
Beam energy	6 GeV	6 GeV	
Beam current	200 mA	100 mA	
Circumference of SR	1360.4 m		
Circumference of booster	454.5 m		
Hori. Natural emittance	34 pm∙rad	100 pm.rad	
Prightnoss	>5x10 ²²	2x10 ²¹	
Digittiess	phs/s/mm ² /mrad ² /0.1%BW	phs/s/mm ² /mrad ² /0.1%BW	

Accelerator physics design of storage ring

• C=1360.4 m, 48 hybrid 7BAs with AB/BLG cell

The middle cell replaced with AB/BLG cell

Combination of Anti-Bend (AB) and Bending magnet with Longitudinal Gradient (BLG) in one cell promises lowest possible emittance ^[1-3].

Emittance optimized to 34 pm.rad with 48 hybrid

Central slice of BLG used for bending magnet beam linein the ring

[1] A. Streun, A. Wrulich, NIM-A 770, 98 (2015).
[2] Y. Jiao, X.Y. Li, G. Xu, IPAC2018, TUPMF054.
[3] B. Riemann, A. Streun, PR-AB 22, 021601 (2019).

Storage Ring Lattice (cont.)

- Alternating verical high- β (~5m) and low- β (~2m) sections
- 48x 6m sections

Main parameters of storage ring

Parameters	High-brightness mode, 200 mA	High-bunch-charge mode, 200 mA ^[1]	Units
Beam energy	6	6	GeV
Number of bunches	680	63	
Bunch Duration (rms)	106	160	ps
Bunch spacing	6	72	ns
Coupling factor	0.1	0.1	
Horizontal emittance	27.5	33	pm∙rad
Vertical emittance	2.75	3.3	pm∙rad
Horizontal beam size (rms) (high-/low- β section)	14.3/8.5	15.6/9.3	μm
Vertical beam size (rms) (high-/low- eta section)	4.4/2.3	4.8/2.5	μm
Lifetime	~4	~0.8	hrs
Time between two refills	~30	~8	S

Accelerator physics design of booster

Requirements from storage ring (SR)

- Emittance less than 20nm
- 15nC for high bunch charge mode
- Setting in a separate tunnel

Design consideration

- "High energy accumulation" to reduce the affect of TMCI @500MeV
- The emittance as lower as better , with α_c >2E-3 (requirement from TMCI)
- π section for 2 kicker re-injection

- Physical design of the magnet finished
 - Longitudinal gradient dipoles (permanent magnet), anti-bend quadrupoles, quadrupoles, sextupoles and octupoles
 → Done
 - Dipole/quadrupole combined magnets
 → Under design

Sextupole SD2/3

Octupole OCT1/2

- Magnets
 - 37 magnets in one 7BA cell
 - BLG 0.11 – 1 T
 - Quad 82 T/m 66 T/m
 - BD
 - Sext
 - Oct
- 6082 T/m² 512600 T/m³ 0.08 T
 - Fast Corr

Power suppliers for magnets

- Finish the design of Digital Power Supply Control Module
- High precision PS developed, designed and tested
 - Long-term stability: better than 10ppm
 - Current resolution: better than 17bits
 - Current ripple: better than 10ppm

FPGA-based main board of Digital Power Supply Control Module

Mechanical support

• Optimize stability, alignment, transportation.

• Eigenfreq. >54Hz from vibration control requirement

RF system

- Number of linear sections for RF: 6 (48 in total)
- Frequency: 166.6MHz (fund.) + 499.8MHz (3rd harm.)
- Technology choice: SRF cavity + Solid state amplifier + digital LLRF
- Energy loss per turn: 4.4MV (14 IDs)
- Total RF voltage: 5.4MV
- Beam power: ~900kW
- Number of RF cavities: 5 fund. + 2 HHC

on-axis swap-out injection scheme:

Linac

- Linac is designed to meet the requirement from the booster.
- Two sub-harmonic bunchers are introduced for the high bunch charge.

Injection hardware developed

- Fast corrector prototype is under development
 - Skew quadrupole type with slot on the pole
 - 0.15mm thickness lamination
- Cross talk between dipole and quadrupole is simulated
- Material properties study
 - BH curve for core material
 - Heat treatment for permanent magnet material

Vacuum: NEG Coating Setup

Two sets of NEG coating equipment have been built and have capability to coat up to **1.5** m long chambers with a diameter of **0.5** m.

Insertion device

Phase I beamlines: 19 IDs, 6 types, including new IDs, APPLE-KNOT undulator and Mango wiggler

Cryogenic Permanent Magnet Undulator (CPMU)

Prototype CPMU 2m in length, short period13.5mm, new magnet PrFeB, liquid nitrogen peak field 0.98T @80K @ 5mm gap, phase error< 6 degree

2m CPMU prototype

LT in-vacuum magnetic measurement bench

Beamlines description

	Beamlines	Features
High Energy	Engineering Materials	50-170keV , XRD, SAXS, PDF
	Hard X-Ray Imaging	10-300keV, Phase and Diffraction contrast imaging, 200mm large spot, 350m long
High Brightness	NanoProbe	Small probe, <10nm; InSitu nanoprobe, <50nm; 180m long
	Structural Dynamics	15-60keV, single-shot diffraction and imaging; < 50nm projection imaging
	High Pressure	110nm focusing, diffraction and imaging
	Nano-ARPES	100-2000eV, 100nm focusing, 5meV@200eV, APPLE- KNOT undulator
High Coherence	Hard X-ray Coherent Scattering	CDI(<5nm resolution), sub-µs XPCS
	Low-Dimension Probe	surface and interface scattering, surface XPCS

Beamlines description (cont.)

	Beamlines	Features
	NRS&Raman	Nuclear Resonant Scattering and X-ray Raman spectroscopy
	XAFS	routine XAFS , plus 350nm spot and quick XAFS
General	Tender spectroscopy	Bending magnet, 2-10keV spectroscopy
beamlines	μ-Macromolecule	1 μ m spot, standard and serial crystallography
	pink SAXS	pink beam, lest optics
	Transmission X-ray Microscope (TXM)	full field nano imaging and spectroscopy
Test	Optics Test	with undulator and wiggler source for optics
beamlines		measurement and R&D

Engineering Materials Beamline (B1)

High energy X-ray for engineering materials

- Source, 2 x CPMUs for photon flux >1×10¹² @100keV
- Mono, Laue monochromator, asymmetrically cut crystal, Double crystal, fixed exit

50keV~170keV , $\Delta E/E$ ~1 \times 10 $^{-3}$ @100 keV

• Focusing, Home made Nickel-based Kinoform, ~2μm×2μm and submicron

Hard X-ray Imaging Beamline (B7)

Goals: High sensitivity, Deep penetration, Multiscale mesoscopic spatial resolution, Large FOV, Multiple contrast mechanisms and compatible with diverse sample environments.

Probes : In-line phase contrast imaging; Diffraction Contrast Imaging Application: Biomedicine: whole organ mesoscopic imaging Engineering Materials Fossils and Human Relics

Features: (1) Large FOV and high Resolution
Ratio of spot size and PSF increase from 2k to 20k, 1000 times of voxels one CT
(2) High sensitivity at high resolution & deep penetration case, very small PSF

Sources, 1xCPMU + 1xWiggler+1x Mango Wiggler ; 350m long beamline

Optical Layout of Nanoprobe beamline

Multimodal Probing: nano-XRF, nano-XRD, nano-XANES Ptychography, Spectra-Ptychography

Endstation schematic

Structural Dynamic Beamline (B3)

Single shot probes for Irreversible progress

Dynamic loading:

Gas gun, Hopkinson bar High power laser,

Additive Manufacturing

Probes: XRD,SAXS,XPCI, Magnified nano-imaging

Hard X-ray Coherent Scattering beamline (B4)

NRS&Raman beamline

- X-ray Raman Spectrometer, referring to the design of ID20 in ESRF
- Q-dependent XRS, 30 130 degree, Vertical and horizontal scattering
- 3*5 array Si(nn0) analyzer crystal, Rowland circle = 1-2m
- 55-µm pixel 2D detector
- Larger-solid-angle realized by multiple analyzer modules
- ✓ Larger scattering angle
- home-made analyzer crystals and small pixel array detectors

Data Workflow

Monochromator (Prototype) Laue Monochromator: Hig 60-150keV do

High heatload liquid nitrogen double crystal monochromator

High energy resolution monochromator, meV

(a)

Versatile monochromators : Preliminary designs under the way

112Hz

increase eigenfrequency

Stability measurement

Building measurement techniques

Stability test based on heterodyne interferometer

----- Voltage

6.014

Vibration level of direct drive spindle with air bearing

Vibration test by accelerometer

Result: Eigenfrq. revealed

Online test

Online test in 3W1 of BSRF

- Laue mono. is running well with cryocooler system (LN cooling) in 3W1 IHEP
- Mono beam at 48.6KeV and 67KeV

DCM prototype and Laue Mono. Prototype vibration test based on accelerometer, and online test

Bent mirrors for sub-micron focusing

Features: Torpedo shape , Non-gravity compensation

X-ray Metrology- Flag-type Surface Profiler(FSP) Features: High accuracy, High Speed

X-ray focusing optics (by LIGA using a LIGA beamline in BSRF)

High Energy X-ray Kinoform by LIGA technique Ni based, 4µm @87KeV measured@PETRAIII

X-ray PMMA Kinoform

Nano-focusing optics and manipulator

Nanofocusing - Multilayer Laue Lens

Multilayers and Mark layersFIB Polishing

Nano manipulator

Time-resolved: Reversible: High repetition rate laser Pump/X-ray Probe for picosecond XRD&XAS

Irreversible: metal laser 3D printing process by fast X-ray imaging

Demonstration test: White light from SCW 600 μm Ti alloy powders ; 20kfps, 20µs exposure

X-ray Pixel Array Detector

Prototype of 1M PAD

Pixel size: 150 x 150µm Pixel number: 1M Active area: 12.24cm×17.28cm Frame rates: 1 KHz Dynamic range: 20bits Energy range: 8-20keV, Si-based

HEPS

55 µm pixel module nearly finished

Module with high-energy sensor under way

R&D tests also use x-ray from current Beijing synchrotron in IHEP, Beijing Synchrotron Radiation Facility (BSRF)

- BEPCII (Beijing Electron Positron Collider II), a double-ring factory like machine with a parasitic BSRF light source
- BSRF, 2.5GeV , 4 wigglers+1 SCW, 14 beamlines and 15 stations in total
- dedicated 3 months for BSRF per year, Parasitic mode available

Platform of Advanced Photon Source Technology (PAPS)

- funded by Beijing local government
- Construction period: 2018.5-2021.6
- Providing key technical support for the construction of HEPS
- Platform of core technology development, verification and equipment testing
- Output of new technologies of accelerator and X-ray applications

Summary

• HEPS is coming. it aims at the brightest synchrotron in the world at completion

 HEPS construction kickoff on June 29, 2019. Expected to finish at the end of 2025 and open to users Civil construction moving quickly Large scale procurements for accelerator have begun Beamline design under optimization yet, with prototype and key tech studies under the way

Thanks for your attentions and stay Healthy !

