Recent Status of the CEPC

Gang Li

Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

BINP-IHEP Seminar Novosibirsky, Russia, December 16-18, 2019

Physics program of CEPC **CEPC accelerator and detectors CEPC** activities **Final remarks**

Outline

Physics at the CEPC

CEPC baseline software — http://cepcsoft.ihep.ac.cn/

Generators (Whizard & Pythia)

Data format & management (LCIO & Marlin)

Simulation (MokkaC)

Digitizations

Tracking

PFA (Arbor)

Single Particle Physics Objects Finder (LICH)

Composed object finder (Coral)

Tau finder

Jet Clustering (FastJet)

Jet Flavor Tagging (LCFIPLus)

Event Display (Druid)

General Analysis Framework (FSClasser)

Fast Simulation (Delphes + FSClasser)

Higgs production in eter collisions

Events at 5.6 ab⁻¹

ZH: 10⁶ events

vvH: 10⁴ events

e+e-H: 10³ events

S/B 1:500-1000

Observables: Higgs mass, CP, σ (ZH), event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), differential distributions

Extract: Absolute Higgs width, couplings

Direct measurement of Higgs cross-section

For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event. The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg expected to be smooth. The best resolution can be achieved from $Z(\rightarrow e^+e^-, \mu^+\mu^-)$.

Direct measurement of Higgs cross-section and m_H

* The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$ Similar sub-percent level for ILC/FCC-ee The mass of Higgs can be measured with a precision 6 MeV combining $Z \rightarrow ee$ (14 MeV) and $Z \rightarrow \mu\mu$ (6.5 MeV)

Higgs Couplings Measurement

Precision of Higgs couplings measurement compared to HL-LHC

 $\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$

CEPC ~1% uncertainty

*K*_Z ~ 0.2 %

ATL-PHYS-PUB-2014-016

Higgs couplings variations due to BSM physics

CEPC will be sensitive to these

LHC not likely to be sensitive to these models even with full HL-LHC dataset

percentage variation relative to SM

gg	WW	au au	ZZ	$\gamma\gamma$	ļ
- 0.8	-0.2	+0.4	-0.5	+0.1	+
-0.2	0.0	+9.8	0.0	+0.1	+
-0.2	0.0	+7.8	0.0	0.0	+
-0.2	0.0	-0.2	0.0	0.1	_
-6.4	-2.1	-6.4	-2.1	-2.1	
-6.1	-2.5	0.0	-2.5	-1.5	(
-3.5	-1.5	-7.8	-1.5	-1.0	_
+10.	-1.5	-1.5	-1.5	-1.0	_
-3.5	-3.5	-3.5	-3.5	-3.5	
	gg - 0.8 -0.2 -0.2 -0.2 -6.4 -6.1 -3.5 +10. -3.5	gg WW - 0.8-0.2-0.20.0-0.20.0-0.20.0-6.4-2.1-6.1-2.5-3.5-1.5+101.5-3.5-3.5	gg WW $\tau\tau$ - 0.8-0.2+0.4-0.20.0+9.8-0.20.0+7.8-0.20.0-0.2-6.4-2.1-6.4-6.1-2.50.0-3.5-1.5-7.8+101.5-1.5-3.5-3.5-3.5	gg WW $\tau\tau$ ZZ - 0.8-0.2+0.4-0.5-0.20.0+9.80.0-0.20.0+7.80.0-0.20.0-0.20.0-6.4-2.1-6.4-2.1-6.1-2.50.0-2.5-3.5-1.5-7.8-1.5+101.5-1.5-1.5-3.5-3.5-3.5-3.5	gg WW $\tau\tau$ ZZ $\gamma\gamma$ - 0.8-0.2+0.4-0.5+0.1-0.20.0+9.80.0+0.1-0.20.0+7.80.00.0-0.20.0-0.20.00.1-6.4-2.1-6.4-2.1-2.1-6.1-2.50.0-2.5-1.5-3.5-1.5-7.8-1.5-1.0+101.5-1.5-1.5-1.0-3.5-3.5-3.5-3.5-3.5

arXiv: 1710.07621

10

Precision Electroweak observables at CEPC

The Physics Goals

Precision tests of Standard Model (H, W, and Z)

Potential to find new physics

Higgs boson and electroweak symmetry breaking

Precision measurements of Higgs couplings **Exotic Higgs decays Exotics Z decays** Dark matter and hidden sectors **Extended Higgs sector**

Precision as determination Jet rates at CEPC QCD dynamics, soft QCD effects, fragmentation functions **QCD** event shapes and light-quark Yukawa couplings

Rare B decays Heavy flavor baryons Tau decays • Flavor violating Z decays

CEPC Accelerator and Detectors

CEPC Accelerator Chain and Systems

10 GeV

Injector

Booster 100 km

Collider Ring 100 km

e-

e+

45/80/120 GeV beams

Energy ramp 10 GeV

45/80/120 GeV

Two machines in one single tunnel

- CEPC (also booster)
- SppC

$\sqrt{s} = 90, 160 \text{ or } 240 \text{ GeV}$ 2 interaction points

The key systems of CEPC:

- 1) Linac Injector
- 2) Booster
- 3) Collider ring
- 4) Machine Detector Interface
- 5) Civil Engineering

14

The CEPC Baseline Collider Design

Double ring Common RF cavities for Higgs

Two RF sections in total

Two RF stations per RF section

 $10 \times 2 = 20$ cryomodules

Six 2-cell cavities per cryomodule

The CEPC Baseline: LINAC Injector

LINAC: 1.2 km

The 100k tunnel cross section

CEPC Civil Engineering Design very advanced

Proposed in Lausanne Workshop in 1984

LEP tunnel internal diameter is 3.8 meters in the arcs 4.4 or 5.5 meters in the straight sections

17

Accelerator key technologies R&D — prototypes

CEPC 650 MHz Cavity

Collaboration with Photon Source projects in Shanghai and Beijing (1.3 GHz cavities)

Booster low-field dipole magnets

 $L_{mag} = 5 \text{ m}, B_{min} = 30 \text{ Gs}, \text{ Errors} < 5 \times 10^{-4}$

High Efficiency Klystron

"High efficiency klystron collaboration consortium", including IHEP, Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

3 high-efficiency klystron (up to 80%) prototypes to be built by 2021

Vacuum system R&D

- 6m copper vacuum chamber: pressure 2 × 10⁻¹⁰ torr - Bellows module: allow thermal expansion, alignment

Challenge: Low-field dipole magnets in Booster ring

Booster Cycle (0.1 Hz)

and the second	and the second	10 En 10.00 - 63
29 Gauss	338 Gauss	29
10 GeV from Linac	120 GeV injection to collider	1 fro

On-going R&D program

12.0

Gauss 0 GeV m Linac

Earth magnetic field: 0.25 to 0.65 Gauss

19

Updated Parameters of Collider Ring

	Hig	ggs	Z (2T)		
	CDR	Updated	CDR	Updated	
Beam energy (GeV)	120	-	45.5	-	
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-	
Piwinski angle	2.58	3.78	23.8	33	
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15	
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000	
Beam current (mA)	17.4	17.8	461.0	1081.4	
Synchrotron radiation power /beam (MW)	30	-	16.5	38.6	
Cell number/cavity	2		2	1	
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.33/0.001	0.2/0.001		
Emittance $\varepsilon_x/\varepsilon_y$ (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	-	
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	17.1/0.042	6.0/0.04	-	
Bunch length σ _z (mm)	3.26	3.93	8.5	11.8	
Lifetime (hour)	0.67	0.22	2.1	1.8	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6	
luminosity incroase f	actor			2 2	
				J.Z	

LUITINIOSITY INCLEUSE IUCIOI.

CEPC: 2.5 Detector Concepts

Particle Flow Approach

Baseline detector ILD-like (3 Tesla)

Full silicon tracker concept

Final two detectors likely to be a mix and match of different options

CEPC plans for **2** interaction points

IDEA Concept also proposed for FCC-ee

Baselin

Particle flo

Particle flow: make use of the optimal sub-detector information in reconstruction and a high granularity calorimetry system required

Particles in jet	Fraction of E	Measured by	Resolutions (σ^2)
Charged tracks	~60%	Tracker	Negligible
Photons	~30%	Ecal	0.20 ² Ejet
Neutral hadron	~10%	Ecal+Hcal	0.50 ² E _{jet}
Conclusion	Required for 30%/sqrt(E)		0.20 ² Ejet
	22		

ne detector
and
ow philosophy

CEPC CDR: Particle Flow Conceptual Detector

Major concerns

- **1. MDI region highly constrained** $L^* = 2.2 m$ **Compensating magnets**
- 2. Low-material Inner Tracker design
- **3. TPC as tracker in high-luminosity Z-pole scenario**
 - 4. ECAL/HCAL granularity needs Passive versus active cooling **Electromagnetic resolution**

Magnetic Field: 3 Tesla

VTX

23

Machine-detector interface (MDI) in CEPC

High luminosities

Detector acceptance: > ± 150 mrad

Solenoid magnetic field limited: 2-3 Tesla

due to beam emittance blow up

Cooling of beampipe needed \rightarrow increases material budget near the interaction point (IP).

Final focusing quadrupoles (QD0) need to be very close to IP

Pixel Detector prototype: (by 2023) Towerjazz

Developing full size CMOS sensor for use in real size prototype, with good radiation hardness 25

3 double ladders of silicon pixel sensors

+ Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$

Low material budget ~ 0.15%X₀ per layer

Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process:

- low material budget,
- low power consumption,
- low cost ...

Collaborating with:

- **Barcelona**, IFAE
- Liverpool
- Oxford
- RAL
- QMU
- UMass, US

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

International collaboration with several institutes (Italy, France, USA) Prototypes of up to ~1 m^3 to be produced by 2023

Studies started on a Crystal (LYSO:Ce + PbWO) ECAL/ Dual readout calorimetry

Detector challenges:

- Compact design
- Calibration of channels
- Cooling
- Cost

Scintillator tiles/strips (here $3 \times 3 \text{ cm}^2$) + SiPMs

26

CEPC activities

Conceptual Design Report

Preliminary CDR

IHEP-CEPC-DR-2015-0 IHEP-EP-2015-01 IHEP-TH-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

March 2015

> IHEP-CEPC-DR-2015-01 IHEP-AC-2015-01

480 authors

CEPC-SPPC

Preliminary Conceptual Design Report The CEPC-SPPC St

March 201

Volume II - Accelerator

300 authors

Australia, Canada, China, France, Germany, Israel, Italy, Japan, Korea, Mexico, Morocco, Pakistan, Russia, Serbia, South Africa, Switzerland, L

Download from: http://cepc.ihep.ac.cn/

Public release: November 2018

IHEP-CEPC-DR-2018-01 **IHEP-AC-2018-01**

CEPC

Conceptual Design Report

Volume I - Accelerator

CEPC

Conceptual Design Report

Volume II - Physics & Detector

arXiv: <u>1809.00285</u>

arXiv: <u>1811.10545</u>

1143 authors 222 institutes (140 foreign) 24 countries

The CEPC Study Group August 2018

The CEPC Study Group October 2018

Editorial Team: 43 people / 22 institutions/ 5 countries

Chuangchun, Jilin 吉林长春

Site selection

Shaanxi

Henan

Jiang

Hong

Kong

Changsha, Hunan

Started Dec, 2018

36km

SIK

Huangling, Shanxi 陕西黄陵

Completed 2017

Considerations:

- 1. Available land
- 2. Geological conditions
- 3. Good social, environment, transportation and cultural conditions
- 4. Fit local development plan: mid-size city \rightarrow + science city

shan, Guangdong 深汕合作区

Completed 2016

Qinhuangdao, Hebei 河北秦皇岛

Completed 2014

Google eat

Shanghai

Xiong an, Hebei

河北雄安

Huzhou, Zhejiang 浙江湖州

CEPC Project Timeline

HTS Magnet R&D Program

CEPC International Workshops

INTERNATIONAL WORKSHOP ON HIGH ENERGY **CIRCULAR ELECTRON POSITRON COLLIDER**

November 6-8, 2017 **IHEP, Beijing**

http://indico.ihep.ac.cn/event/6618

International Advisory Committee

Local Organizing Committee

Calleon 260 attendees hong Cao, PKU **30% from foreign institutions**

Workshop on the Circular **Electron-Positron** Collider

EU Edition

Roma, May 24-26 2018 University of Roma Tre

100 attendees 55% attendance from abroad

 \bigcirc

0

THE 2018 INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

November 12-14, 2018

Institute of High Energy Physics, Beijing, China

https://indico.ihep.ac.cn/event/7389 Submissions of abstracts are encouraged.

International Advisory 330 attendees Local Organizing Committee Committee Young-Kee 22% from foreign institutions

The International workshop on the **Circular Electron Positron Collider EU EDITION 2019**

Oxford, April 15-17, 2019

This year workshops: Chicago: September 16-18 **US-centric workshop** https://indico.cern.ch/event/820586/

IHEP, Beijing: November 18-20 https://indico.ihep.ac.cn/event/9960/ 360 attendees

Furture: 2020 European Edition

Marseille, France

THE 2019 INTERNATIONAL WORKSHOP ON THE HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

Anne Philips

November 18-20, 2019

Institute of High Energy Physics, Beijing, China

https://indico.ihep.ac.cn/event/9960

Scientific Program Committee

Paolo Giacomelli (co-chair), INFN Jianchuan Wang (co-chair), IHEP Franco Bedeschi, INFN Maria Enrica Biagini, INFN Daniela Bortoletto, Oxford Shikma Bressler, Weizmann Joel Butler, FNAL Nathaniel Craig, UCSB Sarah Eno, U. Maryland Angeles Faus-Golfe, LAL Jie Gao, IHEP Yuanning Gao, PKU Sebastian Grinstein, IFAE/ICREA Joao Guimaraes da Costa. Suen Hou, IPAS. Shan Jin, NJU Ivan Koop, BINP Weidong Li, IHEP Michelangelo Mangano, CERN Dave Newbold, RAL Carlo Pagani, Milano Maxim Perelstein, Cornel Jianming Qian, U. Michigan Qing Qin, IHEP Aurore Savoy-Navarro, IRFU-CEA Makoto Tobiyama, KEK Chris Tully, Princeton -----Liantao Wang, U. Chicago Frank Zimmermann, CERN

Local Organizing Committee

Gang Li (co-chair), IHEP Mangi Ruan (co-chair), IHEP Jianchun Wang (co-chair), IHEP Qinghong Cao, PKU Xin Chen, THU Yaguan Fang, IHEP Jibo He, UCAS Song Jin, MEP Haibo Li, IHÈP Zhijun Liang, INEP ianbei Liu, U&TC Xin Shi, IHĘP Meng Wang, SDU Yuehong Xie, CCNU W^+ laijun Yang, SJTU Chunxu Yu, NKU Hao Zhang, IHEP Huagiao Zhang, IHEP Lei Zhang, NJU Yujie Zhang, BUAA Hongbo Zhu, IHEP Huaxing Zhu, ZJU

Conference secretaries: Lin Bian Mali Chen Wanyu Niu Yaru Wu

> Email: cepcws2019@ihep.ac.cn Tel: +(00)86-1088236054 +(00)86-176 1043 0906

Final remarks

The 125 GeV Higgs makes e+e- circular machines an exciting possibility

High-magnetic field (3 Tesla) PFA-oriented — with TPC or full-silicon tracker

2021: CEPC Accelerator TDR expec **2023: CEPC International Detectors** 2030: Data-taking ideal starting da

CEPC CDR: http://cepc.ihep.ac.cn/

- **CEPC accelerator studies well advanced**
- Two significantly different detector concepts being developed

Low-magnetic field (2 Tesla) Drift chamber and dual readout calorimeter

Key accelerator and detector technologies R&D continues and are put to prototyping

:ted	Large synergies between
TDRs	needed R&D and already
te	approved projects

CEPC aims to be an International project At least one future high-energy eter collider should be built CEPC study group ready to participate in FCC project if it is built first World-wide coordination effort is crucial to realize such project

Revival of eter Circular Colliders

Relatively low Higgs mass: m_H = 125 GeV

LEP stopped in 2000, limited by synchrotron energy loss, at $\sqrt{s} = 209$ GeV

 $\frac{240 \text{ GeV}}{209 \text{ GeV}} \sim 1.14$

Synchrotron relative

Ra

2012 Scientists in China

dius	50 km	70 km	100 ki
e to LEP E_b^4	~0.9	~0.65	~0.5

Circular Electron-Positron Collider (CEPC) — precision Higgs studies

 $\sigma(ee \rightarrow ZH)$ $\sigma(ee \rightarrow ZH) \times BR(H \rightarrow ZZ) \propto -$

Extract Higgs total width

Invisible **BSM?**

BSM Physics through Exotic Higgs Decays

General search for BSM

e+e- collider better than HL-LHC for **MET + hadronic final states**

10^{-1} 10^{-2} 10^{-3} 10^{-4}		11-	141	1:00	1	b.	11		(1 .	1
10 ⁻¹ (s) 10 ⁻² 10 ⁻³	10 ⁻⁴									
10 ⁻¹ 10 ⁻¹ 10 ⁻² 10 ⁻² 10 ⁻³								·		
10 ⁻¹ (c) 10 ⁻² 10 ⁻³										
10 ⁻¹ (\$\$) 10 ⁻² 10 ⁻³										
10 ⁻¹ (\$) 10 ⁻²	Й Ш 10 ⁻³			_						
10 ⁻¹ (S) 10 ⁻²										
10 ⁻¹										
10^{-1}	X	: : : : : :								
10^{-1}	÷ 10 ⁻²									
	s)									
	-									
10 ⁻¹	-			= = = = =	= = = = = =		= = = = = = =			
	10 '							EEEEE		
	40-1									
	-									
	-					= = = = = = = = = = = = = =				

from CDR, based on Z. Liu, H. Zhang, LT Wang, 1612.09284 37

CEPC CDR: IDEA Conceptual Detector (CEPC + FCC-ee)

- Inspired on work for 4th detector concept for ILC
 - Only concept with calorimeter outside the coil

	Magnet: 2 Tesla, 2.1 m radius
r	Thin (~ 30 cm), low-mass (~0.8 X
= 200 cm	Vertex: Similar to CEPC default
= 30 cm	* Drift chamber: 4 m long; Radius ~30-20 ~ 1.6% X ₀ , 112 layers
250 cm	Preshower: ~1 X ₀
	* Dual-readout calorimeter: 2 m/8 λ _{int}
450 cm	* (yoke) muon chambers

0 cm,

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Overall Scale : 3.3km² of construction area for short-term use & 6.7km² for future use.

We have gave a preliminary plan to CEPC International Science City, it involves

CEPC Research Core Sector

High-end Service Sector

Innovation Development Sector

International **Communication Sector**

Function Layout

CEPC web site

http://cepc.ihep.ac.cn/

Future High Energy Circular Colliders

The Standard Model (SM) of particle physics can describe the strong, weak and electromagnetic interactions under the framework of quantum gauge field theory. The theoretical predictions of SM are in excellent agreement with the past experimental measurements. Especially the 2013 Nobel Prize in physics was awarded to F. Englert and P. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

After the discovery of the Higgs particle, it is natural to measure its properties as precise as possible, including mass, spin, CP nature, couplings, and etc., at the current running Large Hadron Collider (LHC) and future electron positron colliders, e.g. the International Linear Collider (ILC). The low Higgs mass of ~125 GeV makes possible a Circular Electron Positron Collider (CEPC) as a Higgs Factory, which has the advantage of higher luminosity to cost ratio and the potential to be upgraded to a proton-proton collider to reach unprecedented high energy and discover New Physics.

The CEPC input for the European Strategy

Accelerator

Accelerator Addendum

Physics and Detector

Physics and Detector Addendum

Panel Discussion on Fundamental Physics

Recent Events

The 2019 International Workshop on the High Energy Circular Electron Positron Collider, IHEP, Nov. 18-20th, 2019

The 2018-2019 yearly Meeting of MOST project "High Energy Circular **Electron Positron Collider Key** Technology Research and Validation' was held in IHEP

More.

CEPC Conceptual Design Report

CEPC CDR Volume I (Accelerator)

CEPC CDR Volume II (Physics and Detector)

More..

What's new After the Higgs discovery: Where is the Fundamental Physics going?

Cost of project

Total cost of CEPC

Cost of detectors not evaluated in detail and not part of the Conceptual Design Report done moving forward towards the TDR Jarei Ur Co

Coilider

Higgs Width measurement

$\sigma(W fusion) = \sigma(ee \rightarrow \nu\nu WW^* \rightarrow \nu\nu H)$ $\sigma(W fusion) \times Br(H \to WW^*) \propto \frac{g^4}{\Gamma}$

$\sigma(ee \rightarrow ZH)$

 $\sigma(ee \rightarrow ZH) \times BR(H \rightarrow ZZ) \propto \frac{g^4}{\Gamma}$

Most Immediate Path for the CEPC Realization

Plan Goals

will be selected later

By 2035: 6-10 projects will be cultivated

- March, 2018: Chinese Government New Plan "actively initiating major-international science project..." http://www.gov.cn/zhengce/content/2018-03/28/content_5278056.htm
- focuses on "frontier science, large-fundamental science, global impact, international collaboration"

By 2020: 3-5 projects will be chosen into "preparatory stage", among which 1-2 projects

- The Ministry of Science and Technology (MOST) will select and develop the projects committees formed and writing the guidelines
 - Pre-application submitted by CEPC team about a month ago
- Key task (4): Actively participate in large scientific projects initiated by other countries

