Software & Computing @BESIII

Huaimin Liu IHEP, Beijing

BINP-IHEP Seminar

BINP, Novosibirsk, 16-18 December, 2019

1

Outline

The BESIII Experiment

Recent software activities

- **MDC new tracking software**
- MRPC software
- **CGEM-IT software**

Computing

- Central computing
- Distributed computing
- Tag-based analysis

Summary

BEPCII and BESIII

Beijing Electron Positron Collider II

Milestones

- 2003/3 BEPCII/BESIII project got approval, construction started
- 2008/8 Commissioning run
- 2009/1 Physics Run, BESIII reached its designed goal
- 2015/9 BESIII/ETOF upgraded to MRPC
- 2016/4 BEPCII reached its designed luminosity
- 2019/3 BESIII accumulated 10 Billion J/Psi events
- 2020? BESIII/MDC-IT will be replaced by CGEM
- 202? Shutdown

~11 years data-taking ~250 physics publications

BESIII Physics Journal Publications

5

Software/Computing in HEP

BESIII Offline Software System (BOSS)

Recent software activities

Problem in tracking at low Pt

*For p*_T<120 MeV/*c*, low tracking efficiency, large data/MC discrepancy

Current tracking packages PAT and TSF are local (search from seeded hit) Hard to find curling/loop tracks at high noise level

Tracking based on Hough transform

Hough: global tracking (using all hits) $\rho = X\cos a + Y\sin a$

 $\rho = X \cos \alpha + Y \sin \alpha + r, (upper half circle)$ $\rho = X \cos \alpha + Y \sin \alpha - r, (lower half circle)$

Hough transform using drift time

Tracking efficiency with Hough

 p_T <120 MeV/*c*, the efficiency increased by ~7%

 $J/\Psi \rightarrow p\bar{p}\pi^{+}\pi^{-}$

Momentum range: 50 MeV/c~120 MeV/c

> **Λ_c: Number of signals** 703 – PATTSF+HOUGH 665p01 - PATTSF

Data/MC consistency under Hough

Obviously improved

Tracking efficiency for hadrons

• Systematic error ~ 1%

Protons at low P <200 MeV are extremely low due to large energy loss</p>

MRPC Software

•TOF sintillators (barrel part and two end-caps)

 $\sigma_{\rm b}$ = 80 ps, $\sigma_{\rm e}$ = 140 ps, better PID power needed

•ETOF-MRPC developed by IHEP/USTC, installed in 2015

Soffware:

Simulation
Reconstruction
Calibration/alignment
New data model
Backward compatibility

MC Simulation

Offline Calibration

• Better resolution

-0.6 -0.4

-0.2 0

∆t / ns

0.2 0.4 0.6

MRPC – time resolution of hadrons

Designed time resolution: 80~100 ps for pions at 800MeV

		Ехр	Res.
STAR	RHIC	STAR	74~94ps
BITCE	LHC	ALICE	86ps
₿€SⅢ	BEPCII	BESIII	65ps

PID Efficiency (data/MC)

PID efficiency (MRPC-only) Data: 4.180 GeV (2016)

PID efficiency (TOF/MRPC+dE/dx) Data: XYZ (2017)

Data/MC difference: ~1% for p < 1.5 GeV/c

MDC-IT upgrade – CGEM-IT

- Triple-layer Cylindrical GEM detector Acceptance 93% $\sigma_{xy} \sim 130 \ \mu m$ $\sigma_z < 1 \ mm$ Designed by Italian group
 - Each CGEM layer:

Cathode、3 layer GEM molar, anode 2-d readout strips for time and charge

 Electron multiplication by electrical field in GEM

Complex structure / response Challenge to software developers

CGEM offline software

part of the BESIII Offline Software System (BOSS)

GEANT4 description of CGEM

✓ CGEM-IT (sensitive part)

✓ Passive elements

- ✓ Inner barrel of Outer-Drift-Chamber
- ✓ CGEM geometry service package (CgemGeomSvc)
 - manage geometry parameters (including misalignment effects)
 - provide geometry information and calculation
 - Same for simulation, reconstruction, calibration, and alignment

Full digitization

Most important part, the MC results from Garfield

Comparison with test beam

Better agreement ~ 3% for planar GEM (from Lia)

Track reconstruction (CGEM+ODC)

Global tracking with Hough transform

24

Track finding efficiency (CGEM+ODC)

For single track (MC), same level with BOSS 6.6.5p01

For track fitting, more work needed

Computing

Central computing (IHEP)

HTCondor cluster

- CPU: ~8000 cores
- Storage ~8.5 GB
- Data production (Calib/Rec/MC)
- Physics analysis (all collaboration members)

GPU cluster

1 control nodes , 2 login nodes
 ~ 100 GPU cards (NVIDIA v100)
 PWA (partial wave analysis)
 ML (Machine learning)

GPU hours of jobs: ~ 39,200 ~ 35% of all occupied resources

BESIII distributed computing

- 15 remote nodes: Russia, Italy, US, and Chinese universities
- CPU ~3000 cores, Storage ~500TB
- Mainly for MC production and physics analysis

Generated on 2018-12-12 06:32:14 UTC

TAG based analysis

Data I/O is the bottleneck in analysis: reading all events in a huge data sample
TAG every event in DST, only the interested events are read into memory
Non-consecutive event reading is still time-consuming, should be avoided
Re-ordering the events by TAG information to save reading time
New event ordering structure in DST, no information lost

Test of Tag based analysis

Performance at different number of jobs

- The speed of analysis jobs increases by 3-30 times
- •Will be used in analysis physics groups provide TAG info

Summary

•We are still working to improve offline software and data quality

•We are developing new software for the detector upgrade

•We are developing new method to speed up physics analysis

•BESIII has a powerful computing to face the future data challenge

Я люблю Россию 我爱俄罗斯

Спасибо 谢谢