

CE

BEAM ENERGY MEASUREMENT FOR 120GEV BEAM

TANG Guangyi BINP-IHEP Seminar Dec. 17, 2019

OUTLINE

To study the feasibility of Compton scattering method at CEPC.

- Introduction
 - general methods
 - experience @BEPCII
- Compton scattering method for 120GeV beam
 - measure scattered photon energy.
 - measure positions of beam and scattered particles.
 - outlooks.
- Summary

PHYSICAL AIM

- Higgs Mass from Recoil Mass method^{1/4}
 - If we require $\delta M_{recoil} < 1$ MeV, than, $\delta E_B < 0.25 \sim 1.35$ MeV.
- No significant impact on other Higgs programs
 - $\sigma(ZH)$ measurement
 - Find Left/Right Shift with 0.5% $\sigma(ZH) = 200.5 \text{fb}@240 \text{GeV}$ $200.5 \text{f} \times (1 \pm 0.5\%) \sim @240 \pm 0.5 \text{GeV}$ than, $\delta E_{cm} < 500 \text{MeV}$.
 - Branching ratio (Br(H->bb)) requires $\delta m_H < 130$ MeV.
 - Event/Background selection efficiency.
- WW threshold & Z pole:

at least $\delta E_B < 1$ MeV ~ LEP precision 2×10^{-5}

• Try to do it better, $\delta E_B < 100 \text{keV}$.

GENERAL METHODS

- Using μμ events: BESIII, Belle, ...
 - Uncertainty ~ 40-50MeV (CM energy)
- Resonant depolarization technique (LEP, VEPP...)
 - Relative uncertainty < 2×10^{-5} ("average" beam energy)
- Compton scattering method.
 - Relative uncertainty < 2×10^{-5} (beam energy at the position where beam and laser scattered)
- Others:
 - J/ψ production with extra beams.

GENERAL METHODS

- Using µµ events
 - Uncertainty ~ 40-50MeV (CM energy)

Invaluat Mass of dimuon (+ photon) for $\mu\mu\gamma$ events

 Resonant depolarization technique (@Z-pole, LEP)

- Uncertainty ~ 2×10^{-5}
- CEPC: @Z-pole√, but @ZH?

GENERAL METHODS

Compton scattering method. (beam energy)

- $E_{beam} \sim f(\alpha, \omega, \omega');$
- α : crossing angle; ω : laser photon energy; ω ': maximum energy of scattered photon.

• Or,
$$E_{beam} = \frac{(mc^2)^2}{4\omega} \frac{\Delta\theta}{\theta_0}$$
;

Experiences @BEPCII.

ENERGY MEASUREMENT @BEPCII

Compton Back-scattering:

•
$$E_{beam} = \frac{\omega'}{2} \sqrt{1 + \frac{m_e^2}{\omega \, \omega'}}$$

- Hardware: locate at north IP of BEPCII
 - CO_2 Laser (ω =0.117eV, 50W) and optical system.
 - High purity germanium detector: 16384 channels.
 - Pulse generator and isotopes (Cs, Co, ...).
 - Data acquisition system.

Side-by-side measurement.

ENERGY MEASUREMENT @BEPCII

Compton Back-scattering:

•
$$E_{beam} = \frac{\omega'}{2} \sqrt{1 + \frac{m_e^2}{\omega \, \omega'}}$$

- Calibration with isotopes and pulse generator.
- Fit of maximum photon energy (Compton edge).
- Performance studied by comparison of $\psi(2S)$

• relative uncertainty $\sim 2 \times 10^{-5}$

BEAM ENERGY MEASUREMENT

- If we do the same work @CEPC
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (maximum scattered photon energy). Too large to be measured precisely.
 - Change crossing angle, $\alpha \in (3.06, 3.13)$ rad.

Scattering with infrared laser.

 Or, change the laser frequency ~20GHz.

Scattering with micro-wave.

• The maximum energy of outgoing photon $\omega' \in (1,40)$ MeV.

- If we do the same work @CEPC
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (maximum scattering photon energy). Too large to be measured precisely.
 - The maximum energy of outgoing photon $\omega' \in (1,40)$ MeV.

- Example: crossing angle $\alpha = 3.108$ rad, (scatter 15 MeV photon maximum)
 - $\delta E_{beam} \sim \sqrt{(3.5 \times 10^6 \times \delta \alpha)^2 + (4.0 \times 10^3 \times \delta \omega')^2}$
 - If requiring $\delta E_{beam} < 1$ MeV, $\delta \alpha < 2.8 \times 10^{-7}$ rad and $\delta \omega' < 2.5 \times 10^{-4}$ keV.
- Impact on $\delta \alpha$:
 - Beam orbit, emittance;
 - Laser alignment.
 - Device vibration.
- Impact on $\delta \omega'$:
 - Detector calibration;
 - Statistic uncertainty.

Beam position monitor + long linear orbit.

 $\pi - \alpha = \operatorname{ArcTan}(d/L).$

 linear orbit 2km; BPM precision 0.1mm; alignment uncertainty 40~100μm.

It is crucial to control the incident beam and laser.

- Example: crossing angle $\alpha = 3.108$ rad, (scatter maximal 15MeV photon)
 - $\delta E_{beam} \sim \sqrt{(3.5 \times 10^6 \times \delta \alpha)^2 + (4.0 \times 10^3 \times \delta \omega')^2}$
 - If $\delta E_{beam} < 1$ MeV, $\delta \alpha < 2.8 \times 10^{-7}$ and $\delta \omega' < 2.5 \times 10^{-4}$ keV.
- Impact on $\delta \alpha$:
 - Beam orbit, variance of beam momentum $\delta \vec{p}$; electron: 2018.04.27 [04:24:01 - 17:37:01] 2018.04.27. Live-time: 7 hours 29 min 53 s (22 files).
 - Laser alignment.
- Impact on $\delta \omega'$:
 - Detector calibration;
 - Statistical error.
- $\frac{\delta\omega'}{\omega'} \sim 10^{-4}$, $\delta\omega' \sim 1.5$ keV
- Total beam energy uncertainty~6.1MeV.

Signal-noise ratio? Statistical error?

Compare between different energy region:

0.1

0.5

1.0

photon energy/MeV

5.0

10.0

14

MEASURE SCATTERED PHOTON ENERGY events number v.s. stat. error

- The more statistics stat. error of photon energy/MeV 0 ⁶ are, the smaller the statistical error is.
 - Efficiency
 - Laser power
 - Duration
- Depends on the details of fits.
- 10⁵ 10^{4} 10⁶ The more precisely the beam parameters are input, the better fit we obtain.
 - Energy spread, orbit, emittance...

OUTLINE

To study the feasibility of Compton scattering method.

- Introduction
 - Common method
 - Experiences @BEPCII
- Compton scattering method
 - measure scattered photon energy.
 - measure positions of beam and scattered particles.
- summary

MEASURE POSITIONS

• If $\alpha = 0$, and the orbit difference of particles with different energy in dipole and the synchrotron radiation are omitted.

$$E_{beam} \sim \frac{(mc^2)^2}{4\omega} \frac{\Delta\theta}{\theta_0} \sim \frac{(mc^2)^2}{4\omega} \frac{X_{edge} - X_{beam}}{X_{beam} - X_{\gamma}} + O\left(\left(\frac{X_{edge} - X_{beam}}{X_{beam} - X_{\gamma}}\right)^2\right) \dots$$

 Magnet field: 0.5T; the length of dipole: 3m; the drift distance between the bending magnet and detector: 500m.

MEASURE POSITIONS

The correction term,

 $O(\left(\frac{X_{edge}-X_{beam}}{X_{beam}-X_{\gamma}}\right)^2)$ is a function of drift distance, magnet and beam energy.

- This term changes slowly while magnet field, drift length and beam energy vary.
- This is true whether SR is considered or not.

UNCERTAINTY OF POSITIONS MEASUREMENT

- Three positions should be measured:
 - backscattered photon position, X_{γ} (which is set as the axis origin).
 - the beam position, X_{beam}.
 - the position of the lepton with minimum energy after scattering, X_{edge}.

Beam energy	δX _{edge}	δX _{beam}	δX _γ
120GeV	36µm	22µm	32µm

• If requiring δE_{beam} < 1MeV, the upper limits of positions measurement are listed above.

I/O CHECK USING GAUSSIAN BUNCH

- The energy input is 120GeV.
- Difference between input and output < 1MeV

I/O CHECK USING BEAM SIMULATION

In the beam simulation program, the bunch is tracked for 500 turns, then goes through a extraction beamline.

		Truth	10um bins+crystball function	10um bins+double Gaussian
	X_{γ} /um	-18773 <mark>93</mark>	+26.8±0.8	+29.4±1.2
	X _{beam} /um	1935	+125.1±0.7	+62.9±1.0
	X _{edge} /um	4283 <mark>428</mark>	<mark>+80</mark> ±50	<mark>+80</mark> ±50
	Beam energy/M eV	119936.9	-7.9 ±1.5	<mark>-2.7</mark> ±1.4

I/O CHECK USING BEAM SIMULATIONDifference between input and output >8MeV

coordinate/m

CONCLUSIONS & OUTLOOKS

Two schemes:

Systematic error:

~6 MeV

~1-8 MeV

- Scattering with infrared laser, measure scattered photon energy.
- Scattering with infrared laser, measure bending angle.
- Still more topics should be discussed!!!
 - How to calculate beam energy at IPs?
- Detector selection.
 - Damaged by SR or bunch or not?
 - Alignment and calibration
 - Si, diamond or glass fiber?

study on detectors and simulation.

OUTLOOKS

- Uncertainty of crossing angle α can be handled.
 - beam orbit
 - emittance

understand bunch property.

study on detectors

and simulation.

- Additional hardware is compatible with accelerator.
 - Extract bunches
 - Interface between laser and accelerator (beam pipe)
- Statistical error.
 - detector efficiency?
 - fit scheme?
 - Iaser power pulsed laser, then how to dump it?
- Generator
 - using tree level QED or using simplified kinematics.

OUTLOOKS

HPGE/diamond detector simulation.

SUMMARY

- The study on CEPC beam energy measurement is going on.
- Compton scattering method may be good.
 - Uncertainty seems to be the order of 1~10 MeV.
 - Possible to work @45.5/80/120/175 GeV.
- From a positive view: we are close to the goal, 1MeV uncertainty.
- Negative view: the closer to the goal we are, the harder the life will be.

Thank you!

Thank you!

Бердь 2019-12-16 17:**3**7