BINP-IHEP Seminar

"Tau and QCD physics at present and future electron-positron colliders"

December 16-18, 2019

Study of electron-positron annihilation to hadrons

with CMD-3 at VEPP-2000

Evgeny Kozyrev (on behalf of the CMD-3 collaboration) BINP, NSU e.a.kozyrev@inp.nsk.su 18.12.2019

<mark>VEPP-2000</mark>

- VEPP-2000 (Novosibirsk, Russia) scans the \sqrt{s} in the range from 0.32 to 2.01 GeV
- Beam energy is monitored by the Compton backscattering laser light system with ~50 keV precision
- Uses "round beams" technique (focusing solenoids)
- Maximum luminosity achieved $4 \times 10^{31} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- CMD-3 and SND detectors placed at two beam interaction points

CMD-3 detector & physics program

° Precise measurement of $R = \sigma(e + e - \rightarrow hadrons) / \sigma(e + e - \rightarrow \mu + \mu -)$ to achieve <1% systematic for major channels

° Study of the exclusive hadronic channels of e+e- annihilation, test of the isotopic relations ° Study of the "excited" vector mesons: $\varrho', \varrho'', \omega', \varphi'...$

° Study of GE/GM for nucleons and behavior of hadronic cross sections near nucleonantinucleon threshold

° CVC tests: comparison of isovector part of $\sigma(e+e-\rightarrow hadrons)$ with τ -decays spectra

° Two-photon physics (e.g. η' production)

Detector CMD-3

Tracking:

* Drift Chamber in 1.3 T magnetic field

 $\sigma_{R\phi} \sim 100 \ \mu m, \sigma_Z \sim 2.5 mm$

 $\sigma_{\rm p}/\dot{\rm P} \sim \int 0.6^2 + (4.\bar{4}*p[GeV])^2$,%

Calorimetry:

* Combined EM calorimeter (LXe,CsI, BGO) 13.4 X_o in barrel part

- $\sigma_E / E \sim 0.034 / JE [GeV] \oplus 0.020$ barrel $\sigma_E / E \sim 0.024 / JE [GeV] \oplus 0.023$ endcap

* LXe calorimeter with 7 ionization layers with strip readout

~2mm measurement of conversion point, tracking capability,

shower profile (from 7 layers + CsI)

PID:

× TOF system (σ_T < 1nsec)

particle id mainly for p, n

* Muon system

CMD-3 Motivation

• Indication:

The sum of exclusive measurements disagree with pQCD as well as with inclusive data

- More presice data is needed
- There is still unmeasured exclusive processes

Exclusive channels of $e^+e^- \rightarrow h \, a \, d \, o \, n \, s$

Event signature	Final state (published/submitted, in progress)			
2 charged	$\pi^+\pi^-$ K+K- KSKL pp $\pi^+\pi^-\gamma$	$3\pi +$		
2 charged + γ 's	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<i>q</i> . 1 <i>pp</i> ba <i>K+K</i> <i>K+K</i> (201		
4 charged	$2\pi + 2\pi - K^+ K^- \pi^+ \pi^- K_S K^\pm \pi^\mp$	$2\pi +$ (201		
4 charged +γ's	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ωη, <u>KSK</u> (201		
6 charged	$3\pi + 3\pi - K_S K_S \pi + \pi -$	$3\pi + K + K$		
6 charged $+\gamma$'s	$3\pi + 3\pi - \pi^0$	Obs		
Fully neutral	$π_0 \gamma$ 2 $π_0 \gamma$ 3 $π_0 \gamma$ $\eta \gamma$ $π_0 \eta \gamma$ 2 $π_0 \eta \gamma$	••••		
Other	$nn \pi_{0e+e-} \eta_{e+e-}$			

lished/submitted results: 3π -: PLB 723 (2013) 82-89 PLB 740 (2015) 273-277 ar: PLB 759 (2016) 634-640 $-\pi + \pi -:$ PLB 756 (2016) $(-(at \phi(1020)))$: PLB 760 16) 314-319 2π – (near ϕ (1020):PLB 768 17)345-350 $\eta\pi + \pi - \pi 0$: PLB 773 (2017) *L* (*at* $\phi(1020)$): PLB 779 18) 64-71 $3\pi - \pi 0$: PLB 792 (2019) *-η*: PLB 798, (2019)134946 servation of a fine structure PLB-D-19-00534R1

Measurement of cross section in exlusive mode The study of The study of intermediate e+e- -> hadrons dynamics The search of in inclusive mode rare processes

$e^+e^- \rightarrow \pi^+\pi^-$: pion formfactor measurement

- It is a main contributor to the $a^{had,LO}_{\mu}$ (~73%)
- The CMD-3's goal it to measure the $|F_{\pi}|^2$ with 0.4-0.5% systematics uncertainty
- CMD-3's 2013 & 2018 statistics for $\pi^+\pi^-$ a few times larger than in other experiments
- To control systematics, two independent approaches for determination of the number of $\pi^+\pi^-$ events are used:

momentum-based and energy deposition-based

- Momentum-based approach works better at low c.m. energies (<0.8 GeV), energy-based at large energies (>0.6 GeV). Using both methods in the middle allows to control systematics
- In both cases 2D-likelihood function is constructed, its minimization gives $N_{\pi\pi}/N_{ee}$

Energy deposition, MeV. +

$e^+e^- \rightarrow \pi^+\pi^-$: pion formfactor measurement

- The projection of the fitting functions after minimization: 10⁴
- The list of sources of systematics:
- Radiative corrections
- $e/\mu/\pi$ separation
- Uncertainty of fiducial volume
- Beam energy
- Electron bremsstrahlung loss
- Pion specific corrections
- Currently the systematics is estimated to be 0.6-0.9% (momentum-based)

Additional test – $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ measurement (compatible with QED at ~0.25%):

 The results of 2013 and 2018 ar consistent within ~0.1%:

e⁺e⁻ → K antiK

Other processes

Multihadron production @ NN threshold

- In 2017 we did the detailed scan of $N\overline{N}$ threshold region with the step 0.8 MeV (~beam energy spread)
- Several dip structures with ~ 1 MeV width are seen in multihadron production! (see details in PLB 794 (2019) 64-68)
- Effect can be described via optical nucleonantinucleon potentials ("Milstein-Salnikov" parametrization, see Nuc. Phys. A 977 (2018) 60-68)

Results of the fit to the exponentially rising function. Only statistical uncertainties are shown.

Reac.	A, nb	B, nb	E _{thr} , MeV	$\sigma_{ m thr}$, MeV	χ²/ndf
$p\bar{p}$	0 – fxd	0.91±0.02	1877.1±0.2	0.18±0.27	29/26
$p\bar{p}$	0 – fxd	0.91±0.02	1876.54-fxd	0.76±0.28	31/27
6п	1.55±0.02	-0.42±0.03	1875.8±0.2	0.18±0.67	17/20
6п	1.54±0.02	-0.41±0.03	1876.54–fxd	0.0±2.5	18/21
2К2п	4.69±0.08	-0.44±0.12	1878.8±0.2	0.35±2.69	7/10
2 <i>K</i> 2π	4.70±0.08	-0.45±0.12	1876.54–fxd	2.36±2.01	8/11

$$\sigma_{
m Born}(
m E_{
m c.m.}) =
m A +
m B \left[1 - \exp \left(- rac{(
m E_{
m c.m.} -
m E_{
m thr})}{\sigma_{
m thr}}
ight)
ight]$$

Multihadron production @ NN threshold

• Hovewer, some questions still remain: why no "dip" structure in $e^+e^- \rightarrow 2\pi^+2\pi^-$, $\pi^+\pi^-4\pi^0$?

 $e^+e^- -> 2(\pi^+\pi^-)$

Figure 4: The $e^+e^- \rightarrow 2(\pi^+\pi^-)$ cross section measured with the CMD-3 detector. Lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

Event selection (ee $\rightarrow \pi^+\pi^2\pi^0$) 43 kevents

- $0.75 < \theta_{\pi,\gamma} < \pi 0.75$ rad
- Total E- \sqrt{s} and P < 150 MeV/(c)
- Two candidates for π^0
- 6C kinematic fit

• The invariant mass spectrum of 3rd and 4th photons is used for the estimation of the contribution of background:

Event selection

(ee $\rightarrow 2\pi^+2\pi$) 83 kevents

- 0.75 < $\theta_{_{\!\!\Pi}}$ < π 0.75 rad
- |Total E|-√s) and P < 150 MeV/(c)
- 4C kinematic fit
- The spectrum of total energy of four tracks (E- \sqrt{s}) is used for the estimation of the contribution of background:

Amplitude analysis

The production of 4π system can proceed via a list of intermediate states:

- $\omega[1^{--}]\pi^0[0^{-+}]$ (only $2\pi^02\pi^{\pm}$)
- $a1(1260)[1^+]\pi[0^-]$
- $\rho[1^{--}]f_0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^+ \rho^-$ (only $2\pi^0 2\pi^{\pm}$)
- $a_2(1320)[2^{++}]\pi$
- $h_1(1170)[1^{+-}]\pi^0$ (only $2\pi^0 2\pi^{\pm}$)
- $\pi'(1300)(0^{-+})\pi$

The likelihood for model under test is

$$\begin{split} \mathcal{L} &= - \ln \prod_{i} rac{|\sum_{lpha} \mathbf{V}_{lpha} A^{0}_{lpha}(\Omega_{i})|^{2}}{rac{1}{N_{\mathrm{MC}}^{\mathrm{gen}} \sum_{k} |\sum_{lpha} \mathbf{V}_{lpha} A^{0}_{lpha}(\Omega_{k})|^{2}} - \\ &- \ln \prod_{j} rac{|\sum_{lpha} \mathbf{V}_{lpha} A^{\pm}_{lpha}(\Omega_{j})|^{2}}{rac{1}{N_{\mathrm{MC}}^{\mathrm{gen}} \sum_{k} |\sum_{lpha} \mathbf{V}_{lpha} A^{\pm}_{lpha}(\Omega_{k})|^{2}}, \end{split}$$

The relative number of events
$$I$$
 at a particular point Ω in phase space can be represented as

$$I(\Omega) = |V_{lpha} A_{lpha}(\Omega)|^2$$

where the sum runs over all intermediate states, V_{α} - the complex production amplitude (the free parameter) and $A_{\alpha}(\Omega)$ - the amplitude at a particular point in phase space.

Obtained amplitudes can be used for the prediction of $W \to 4\pi$, ex., $\tau \to \omega \pi^-$, $\tau \to a_1(1260)\pi$, $\tau \to \rho^-[\sigma(500) + f_0(980)]$, $\tau \to \rho^- f_2(1270)$, $\tau \to \rho^- \rho^0$, $\tau \to h_1(1170)\pi^{0-20}$

ee → pi⁺pi⁻2pi⁰

There are three different options to study dynamics (measure cross section) at BESIII

- 1. Using ISR events in data sets at charmonium and other resonances
- 2. Using data from R-scans
- 3. Huge BESIII data at, ex., J/ψ allows to study the dynamics of J/ψ decays into hadrons as well as continuum dynamics

There are three different options to study dynamics (measure cross section) at BESIII

- 1. Using ISR events in data sets at charmonium and other resonances
- 2. Using data from R-scans
- 3. Huge BESIII data at, ex., J/ψ allows to study the dynamics of J/ψ decays into hadrons as well as continuum dynamics

 $B(J/\psi \rightarrow \pi + \pi - 2\pi 0) \sim 5 \times 10^{-3}$

 $10 \times 10^9 \times B(J/\psi \rightarrow \pi + \pi - 2\pi 0) = 5 \times 10^6$

All possible KK $\pi\pi$ combinations are measured – BaBar data

Eur.Phys.J.C71:1515,2011

The most important diagrams for the analysis of $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$

Invariant mass spectra for $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$ (10 kevents)

The angle between kaons

Invariant mass of K+K-

EXP MC

Invariant mass of πK

Invariant mass of 2π

EXP MC

Cross section of $e^+e^- \rightarrow K_s K_s \pi^+\pi^-$

• Simultaneous analysis of all $e+e-\rightarrow KK\pi\pi$ channels is required for comprehensive meson spectroscopy and the test of isospin relations

Summary

- CMD-3 has taken ~250 pb⁻¹ of data in the whole energy range GeV and is going to take ~1 fb⁻¹ in the next ~5 years.
- Many analyses have been published. Many others are in progress.
- The dominance of the channels $w\pi$ and $a_1\pi$ below 2 GeV is confirmed in the $e^+e^- \rightarrow 4\pi$.
- The perspectives of the analysis of $e+e-\rightarrow KK\pi\pi$ is shown
- It looks that the production of two ground-state vectors ($\rho^{-}\rho^{+}$, K*(890)barK*(890)) is suppressed relatively to the emission of pseudoscalar ($\omega \pi$, $a_{1}\pi$, $K_{1}K$).
- If you are interesting in the analysing of the CMD-3 data you are more than welcome.
- BES-III and CMD-3 physics programs are strongly overlapping. We can be useful to each other.