

Sergey Petrushanko (for CMS Collaboration) SINP MSU Russia



# Heavy-ion physics with the CMS detector at the LHC



Сессия-конференция СЯФ ОФН РАН Новосибирск, РФ 10-12 марта 2020 года





### CMS is a nice heavy-ion experiment



CMS DETECTOR STEEL RETURN YOKE : 14.000 tonnes 12.500 tonnes Total weight SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150  $\mu$ m) ~1m<sup>2</sup> ~66M channels Microstrips (80x180 µm) ~200m<sup>2</sup> ~9.6M channels Overall length : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers PRESHOWER Silicon strips ~16m<sup>2</sup> ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4 crystals HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

Magnetic field: 3.8 Tesla

Silicon Tracker

|η| < 2.4</li>
Electromagnetic
Calorimeter

|η| < 3.0</li>

Hadron Calorimeter

barrel and endcap
|η| < 3.0</li>

with HF-calorimeter up to

|η| < 5.2</li>
Muon Chambers
|η| < 2.4</li>

+ CASTOR detector 5.2 < |η| < 6.6 + Zero-degree calorimeter + TOTEM





#### November 7, 2010 0:27 CMS Control Room









### **CMS** heavy-ion results



#### 95 published/submitted Heavy-ion Physics CMS papers:

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIN/index.html







# **CMS** heavy-ion results



- **Global picture of heavy-ion collisions** 
  - multiplicity,
  - energy,
  - flow, ...
- Hard probes - jets
  - dimuons
  - charged hadrons  $R_{AA}$ , ...
- **Pb+Pb** collisions 2010-11: 2.76 TeV 0.16/nb 2015-18: 5.02 TeV 1.7/nb





- p+p, p+Pb, Xe+Xe
  - correlations
  - flow,









### **Charged particle multiplicity Transverse energy density**











Non-central Pb+Pb "screenshots" from CMS Event Monitor: Electromagnetic, Hadronic Energy and charged particles tracks









**Collective motion is observed in the event azimuthal distributions** Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics







Interplay of elliptic and triangular flows in HYDJET++

G. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, S. V. Petrushanko, A. M. Snigirev, L. Bravina, E. E. Zabrodin, Phys. Rev. C 91 (2015), 064907





# Collectivity in p+p, p+Pb, Pb+Pb





Elliptic flow extracted from long-range two-particle correlations was similar for p+p and p+Pb (collective origin for the observed long-range correlations in high-multiplicity p+p collisions?)





# Heavy quark collectivity in small systems





• Significant positive v<sub>2</sub> values are observed for D<sup>0</sup> mesons with  $p_T > 2 \text{ GeV}/c$ .

• The collective behavior of charm quarks in high-multiplicity p+Pb collisions is weaker than that of the light-flavor quarks.









# v<sub>2</sub> Xe+Xe vs. Pb+Pb

PRC 100 (2019) 044902





The magnitude of the  $v_2$  coefficients for Xe+Xe collisions are larger than those found in Pb+Pb collisions for the most central collisions. This is attributed to a larger fluctuation component in the lighter colliding system. *Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics* 14



Hydrodynamic models that consider the Xe nuclear deformation are able to better describe the  $v_2[Xe+Xe]/v_2[Pb+Pb]$  ratio in central collisions than those assuming a spherical Xe shape.





# Hard Probes for Quark-Gluon Plasma













# **Upsilon suppression in Pb+Pb**





- Observation of sequential suppression of Y family.
- No any sign of Y(3S) in the high statistics 2015 data.

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics



# Jet quenching in Pb+Pb









# **Charged-particle R**<sub>AA</sub>: Xe+Xe vs. Pb+Pb





For  $p_T > 6 \text{ GeV}/c$ the Xe+Xe data show a notably smaller suppression than previous results for Pb+Pb collisions when compared at the same centrality.

JHEP 10 (2018) 138





# LHC Timeline and CMS Upgrade





22







- Many interesting heavy-ion physics results with the CMS detector in p+p, p+Pb, Pb+Pb and Xe+Xe...
- Future heavy-ion program at the LHC (Run 3 and 4) with the upgraded CMS detector will provide more exciting opportunities!

