



# Измерение сечения процесса $e^+e^- \to K^+ K^- \pi^0$ на детекторе СНД при энергии в системе центра масс $\sqrt{\{s\}} = 1.3 - 2.0 \ \Gamma$ эВ.

Е. В. Пахтусова

Институт ядерной физики им. Г.И. Будкера СО РАН

Сессия-конференция СЯФ ОФН РАН

10-12 March 2020

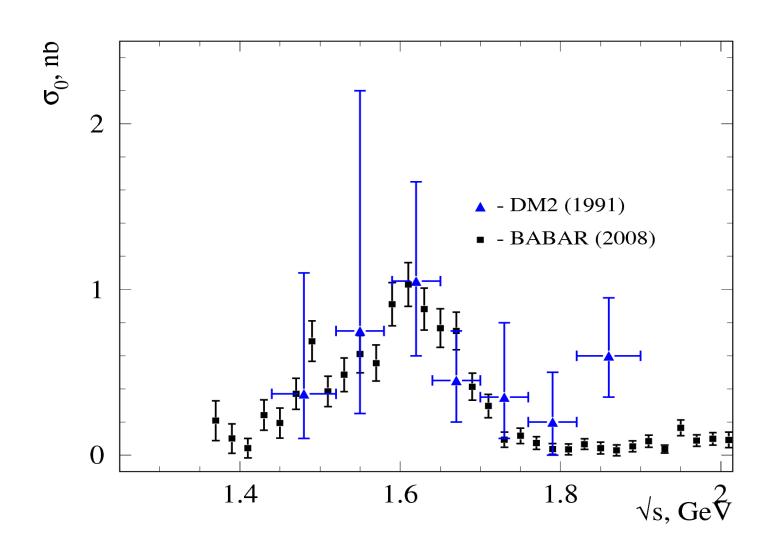
### Процесс $e^+e^- o K^+ K^- \pi^0$

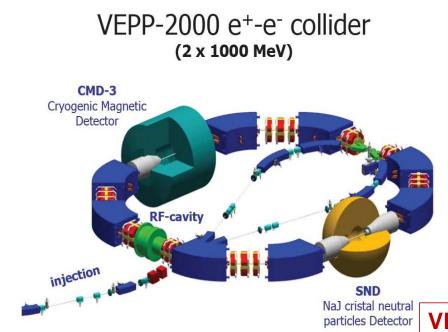
### Содержание

- 1. Мотивация
- 2. Детектор, коллайдер, эксперимент
- 3. Отбор событий процесса  ${
  m e^+e^-} 
  ightarrow {
  m K^+} {
  m K^-} {
  m \pi^0}$
- 4. Идентификация каонов
- 5. Подавление фона
- 6. Распределения событий
- 7. Сечение процесса  $e^+e^- o K^+ K^- \pi^0$
- 8. Отбор событий процесса  $e^+e^- o \phi \pi^0 o K^+ \ K^- \ \pi^0$
- 9. Сечение процесса  $\mathrm{e^+e^-} \to \phi \pi^0 \to \mathrm{K^+} \; \mathrm{K^-} \; \pi^0$
- 10. Заключение

### Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

Процесс  $e^+e^- \to K^+ K^- \pi^0$  является одним из трех зарядовых состояний процесса  $e^+e^- \to K$  anti-K  $\pi$ , который дает значимый вклад (около 12% при энергии в системе центра масс  $\sqrt{s} \approx 1.65 \ \Gamma$ эВ) в полное сечение  $e^+e^-$  аннигиляции в адроны.


Является ключевым процессом для измерения параметров резонанса ф(1680).


Реакция  $e^+e^- \to K^+ K^- \pi^0$  впервые наблюдалась в эксперименте DM2 (1991)

(D. Bisello et al., Z. Phys. C52, 227 (1991)). Точность измерения ее сечения была существенно улучшена в эксперименте BABAR (2008) (B.Aubert et al., Phys.Rev. D77, 092002 (2008)), в котором этот процесс исследовался методом радиационного возврата (ISR). В этой же работе было показано, что процесс  $e^+e^- \to K^+ K^- \pi^0$  идет через промежуточные состояния  $K^{*\pm}(892) K^{-+}$ ,  $\phi(1020) \pi^0$  и  $K_2^{*\pm}(1430) K^{-+}$ . В области энергии ВЭПП-2000  $\sqrt{s} < 2$  ГэВ вкладом промежуточного состояния  $K_2^{*\pm}(1430) K^{-+}$  можно пренебречь. Сечение процесса  $e^+e^- \to \phi(1020) \pi^0$  было также измерено в эксперименте BABAR (2017) в конечном состоянии  $K_s K_1 \pi^0$ . (J.P. Lees et al., Phys. Rev. D95, 052001 (2017)).

В данной работе сечение процесса  $e^+e^- \to K^+ K^- \pi^0$  было измерено в диапазоне энергий в системе центра масс  $\sqrt{s}$ =1.28 - 2.00 ГэВ. Для анализа использовались данные с интегральной светимостью 26.4 пб<sup>-1</sup>, накопленные в эксперименте с детектором СНД на  $e^+e^-$ -коллайдере ВЭПП-2000.

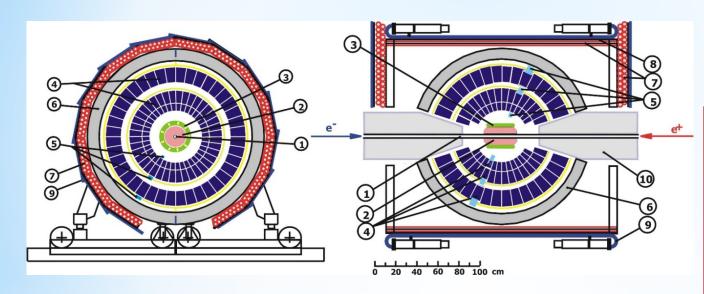
### Процесс $e^+e^- o K^+ K^- \pi^0$





In operation since 2010

Total integrated luminosity at CMD-3 and SND ~200 inv.pb.

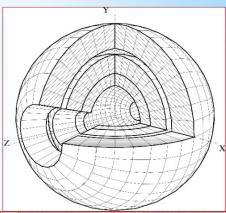

Planned luminosity ~ 2 inv.fb

### **VEPP-2000** parameters:

- c.m. energy E=0.3-2.0 GeV
- round beam optics
- Luminosity at E=1.8 GeV
   1×10<sup>32</sup> cm<sup>-2</sup> sec<sup>-1</sup> (project),
   5×10<sup>31</sup> cm<sup>-2</sup> sec<sup>-1</sup> (achieved)



### SND detector (since 1995)




1 – vacuum chamber, 2 – tracking DC,

3 – aerogel n=1.13, 1.05 4 – NaI(Tl) crystals,

5 – phototriodes, 6 – absorber, 7–9 – muon

detector, 10 – SC solenoids



### Main parameters:

#### Calorimeter:

### **Energy resolution:**

$$\frac{\sigma_E}{E} = \frac{4.2\%}{\sqrt[4]{E(GeV)}}$$

### Angular resolution:

$$\sigma_{\phi} = \frac{0.82^{\circ}}{\sqrt{E(\text{GeV})}} \oplus 0.63^{\circ}$$

### Tracking system:

### Angular resolution:

$$\sigma_{\rm M} = 0.55\theta$$
,  $\sigma_{\theta} = 1.2^{\circ}$ 

### Spatial resolution:

$$\sigma_R = 0.12cm, \sigma_Z = 0.45cm$$
Aerogel counters:

 $\pi/K$  separation E<1 GeV

### Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

События процесса  $e^+e^- \to K^+ K^- \pi^0$  регистрируются как пара заряженных частиц, сопровождаемая двумя фотонами от распада  $\pi^0$ . События могут содержать дополнительные треки в дрейфовой камере, источником которых могут быть  $\delta$ -электроны или пучковый фон. В событии могут появляться дополнительные фотоны от пучкового фона или ядерного взаимодействию каонов в калориметре.

Мы отбираем события с двумя или тремя заряженными частицами и с числом фотонов больше одного.

### условия отбора:

$$1 < nc \le 3$$
  $0.2 \le Eton \le 0.85$ 

$$nn > 1$$
  $|z_0(1,2)| \le 10 \text{ cm}$ 

2 заряженные частицы должны находиться в области встречи пучков, т.е. должны выполняться условия на расстояние между треком и осью пучка:

$$|d_0(i)| < 0.3 \text{ cm}, i=1,2$$

Если в событии имеется три заряженных частицы, то выбираются две из них, имеющие лучший х2 реконструкции общей вершины, а третья должна быть вне области встречи пучков,

$$|d_0(3)| > 0.2 \text{ cm}.$$

### Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

$$e+e-\rightarrow K^+ K^- \pi^0$$

## Основными фоновыми процессами являются:

e+ e- 
$$\rightarrow \pi^+ \pi^- \pi^0$$

$$\chi 2(3\pi) (\pi^+ \pi^- \gamma \gamma)$$

e+ e- 
$$\rightarrow \pi^+ \pi^- \pi^0 \pi^0$$

$$\chi^{2}(4\pi) (\pi^{+} \pi^{-} \pi^{0} \pi^{0})$$

e+ e- 
$$\rightarrow$$
  $\pi^+$   $\pi^ \pi^0$   $\pi^0$ 

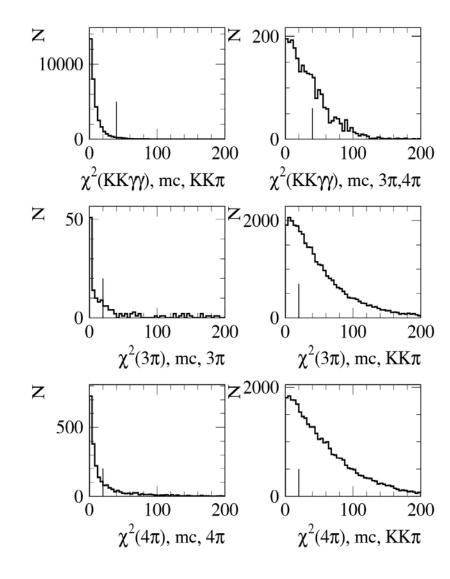
$$e+e-\rightarrow K^+K^-$$

$$e+e-\rightarrow K_S K_L$$

$$\chi 2(KK\gamma\gamma) < 40$$

e+ e- 
$$\rightarrow$$
 K<sub>S</sub> K $^{\pm}\pi^{-+}$ 

$$\chi 2(3\pi) > 20$$


e+ e- 
$$\rightarrow$$
 K<sub>L</sub> K<sup>±</sup> $\pi$ <sup>-+</sup>

$$\chi 2(4\pi) > 20;$$

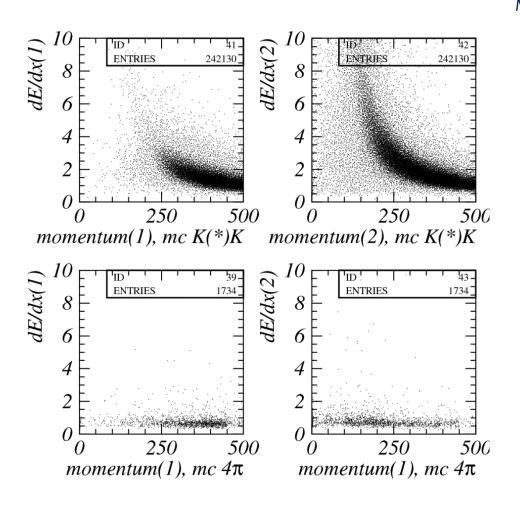
$$e+e-\rightarrow K^+K^-\pi^0\pi^0$$

$$e+e- \rightarrow K_s K^{\pm}\pi^{-+}\pi^0$$

$$e+e-\rightarrow K_{I} K^{\pm} \pi^{-+} \pi^{0}$$



### Идентификация каонов


Идентификация каонов производилась с использованием информации о срабатывании пороговых черенковских счетчиков (АЧС) и об удельных ионизационных потерях заряженных частиц (dE/dx) в дрейфовой камере.

АЧС срабатывает от  $\pi$ -мезонов с импульсами выше 265 МэВ/с<sup>2</sup> и не срабатывает от К-мезонов при всех возможных на ВЭПП-2000 значениях импульсов.

Калибровка ионизационных потерь, необходимая для учета изменений газового усиления в дрейфовой камере во время набора данных, проводилась по событиям упругого e+e- рассеяния.

Пионы имеют слабую зависимость dE/dx от импульса частицы, а для каонов процесса  $e^+e^- \rightarrow K^+K^-\pi^0$  в рассматриваемом диапазоне энергии пучка накопителя импульсы изменяются от 100 MэB/c² до 800 МэB/с², приводя к сильной зависимости dE/dx от импульса частицы.

## Распределение энерговыделения dE/dx в ДК



Распределение плотности вероятности энерговыделения dE/dx пионов и каонов в ДК. Гистограмма - моделирование, точки с ошибками — эксперимент



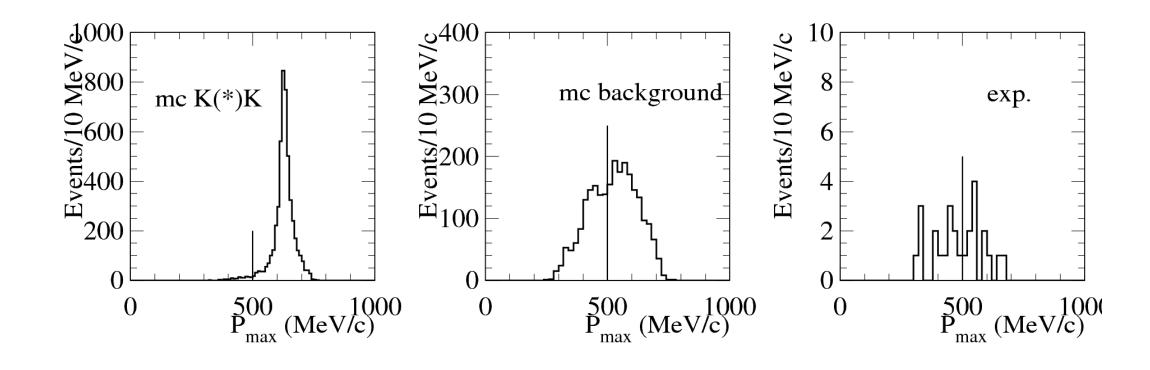
### Идентификация каонов

Для отбора событий процесса  $e^+e^-\to K^+K^-\pi^0$  требовалось, чтобы обе заряженные частицы попали в АЧС. Для этого вводится ограничение на полярный угол частицы

$$40^{\circ} \le \theta \le 140^{\circ}$$

При этом необходимо, чтобы хотя бы одна заряженная частица попадала в активную область черенковского счетчика и не имела сигнала в этом счетчике. Для подавления фона, содержащего заряженные пионы, вводится ограничение dE/dx > 1, если восстановленный в модели  $e^+e^- \rightarrow K^+ K^- \gamma \gamma$  импульс частицы меньше 300 МэВ/с².

Для частиц, не попавших в рабочую область АЧС, каонами считаются частицы, имеющие импульс P< 450 MэB/c² в модели  $e^+e^- \rightarrow K^+ K^- \gamma \gamma$  и dE/dx > 1. При ограничении dE/dx > 1 эффективность регистрации событий, содержащих пионы, падает вдвое (для процесса  $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ ).


## Суммарная энергия фотонов, не входящих в $\pi^0$ , нормированная на энергию в пучке



### Подавление фона

Для дополнительного подавления фоновых процессов использовались ограничения на минимальный и максимальный импульс частицы, восстановленной в модели  $K^+$   $K^ \gamma\gamma$  как каон. Минимальное допустимое значение импульса частицы в соответствии с моделированием процесса  $e^+$   $e^- \rightarrow K^+$   $K^ \pi^0$  равно 100 MэB/ $c^2$ , а максимальное допустимое значение импульса частицы зависит от энергии в пучке.

Распределение по максимальному значению импульса каонов в модели К+К-үү при энергии в пучке 900 МэВ.

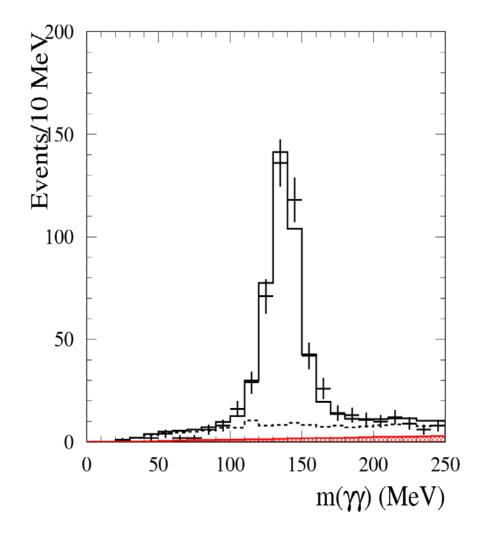


### Подавление фона

Для исключения фона от коллинеарных событий процессов  $e^+e^- \rightarrow e^+e^-$ ,  $\pi^+\pi^-$ ,  $K^+K^-$  вводились ограничения на отклонения от коллинеарности по азимутальному и полярному углам заряженных частиц:

$$|\Delta\theta| > 5^{\circ}$$
,  $|\Delta\phi| > 5^{\circ}$ 

Исключение из рассмотрения событий процесса  $e^+e^- \to \phi \pi^0$  обеспечивалось ограничением на массу отдачи  $\pi^0$ :


$$m_{rec}(\pi^0) > 1050 \text{ M} \cdot \text{B/c}^2$$
.

### Определение числа событий

Для отобранных событий строилась инвариантная масса 2-х фотонов в модели К+ К- ү ү. События искомого процесса отбирались в диапазоне инвариантной массы пары фотонов

$$30 \text{ MeV/c}^2 < m_{\gamma\gamma} < 250 \text{ MeV/c}^2$$
.

Распределение экспериментальных событий по инвариантной массе 2γ аппроксимировалось суммой аналогичного нормированного распределения, полученного моделированием процесса К<sup>+</sup>К<sup>-</sup>π<sup>0</sup> с произвольным коэффициентом, равным числу событий искомого процесса, расчетного значения вкладов перечисленных фоновых процессов, умноженного на коэффициент, определяемый при фитировании в пределах 10% отличия от 1, и оставшегося неучтенного фона, аппроксимированного линейной функцией.



### процесс $e^+e^- \rightarrow K^+K^-\pi^0$

$$\sigma_{\text{vis}}(\sqrt{s}) = \int_{0}^{z_{\text{max}}} dz \sigma_{0}(\sqrt{s(1-z)}) F(z,s) \varepsilon(\sqrt{s},z),$$

$$F(z,s)$$
 - вероятность излучения фотона с энергией  $z\sqrt{s}/2$ 

$$\mathcal{E}(\sqrt{s},z)$$
 - эффективность регистрации

$$z_{max} = 1 - (m_{\pi 0} + 2mK)^2/s$$

$$\sigma_{vis,i} = N_{exp,i}/L_i$$

$$1+\delta(s) = \sigma_{vis} (\sqrt{s}) / (\varepsilon_0 (\sqrt{s}) \sigma_0 (\sqrt{s}))$$

$$\varepsilon_0(\sqrt{s}) = \varepsilon(\sqrt{s}, z = 0)$$

$$\sigma_{0,i} = \frac{\sigma_{vis,i}}{\varepsilon_0(\sqrt{s})(1+\delta(s))}$$

Эффективность регистрации событий процесса как функция Vs и энергии фотона, излученного из начального состояния, определялась по моделированию на основе модели

$$e+e- \to K^{*\pm}(892) K^{\mp} \to K^{+} K^{-} \pi^{0}$$
.

Характерная зависимость эффективности от энергии фотона, полученная при √s =1.575 ГэВ, показана на рисунке.

Значения эффективности при нулевой энергии фотона  $\varepsilon_0(\sqrt{s}) = \varepsilon(\sqrt{s}, 0)$  для разных точек по энергии приведены в таблице.



$$e^{+}e^{-} \rightarrow K^{*}(892)^{0} \ \overline{K} \rightarrow K^{+} K^{-} \pi^{0}$$

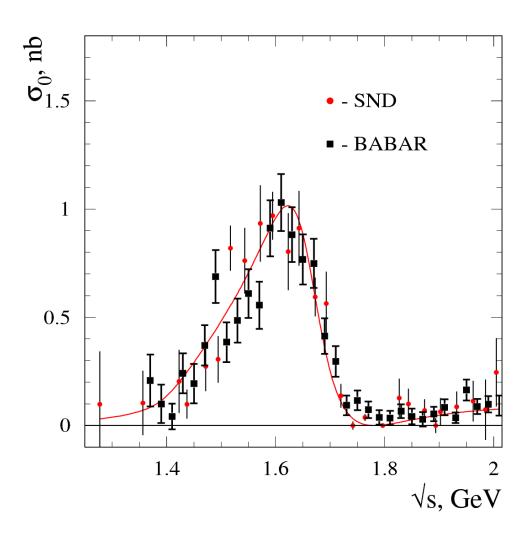
В работе BaBar были отдельно измерены изоскалярное и изовекторное сечения для процесса е+е- → K\*anti-К и показано, что изоскалярная амплитуда доминирует только вблизи максимума резонанса ф(1680). Ниже 1.55 ГэВ и выше 1.8 ГэВ изоскалярная и изовекторная амплитуды одного порядка. В данной работе для описания борновского сечения процесса мы используем упрощенную двух-резонансную модель

$$\sigma_0(\sqrt{s}) = |A_0 B W_0(s) + e^{i\alpha} A_1 B W_1(s)|^2 \frac{P(s)}{s^{3/2}}$$

где  $BW_i(s) = M_i\Gamma_i(M_i^2 - s) - i\sqrt{s}\Gamma_i$ ,  $M_i$  и  $\Gamma_i$  — массы и ширины двух эффективных резонансов,  $A_i$  — их вещественные амплитуды, а  $\alpha$  — относительная фаза между амплитудами. Функция P(s) описывает энергетическую зависимость фазового объема системы  $K^*(892)^0\bar{K}$ :

$$P(s) = \frac{1}{\pi} \int_{(m_{\pi} + m_{K})^{2}}^{(\sqrt{s} - m_{K})^{2}} \frac{m_{K^{*}} \Gamma_{K^{*}}}{(q^{2} - m_{K^{*}}^{2})^{2} + m_{K^{*}}^{2} \Gamma_{K^{*}}^{2}} p^{3}(q^{2}) dq^{2},$$

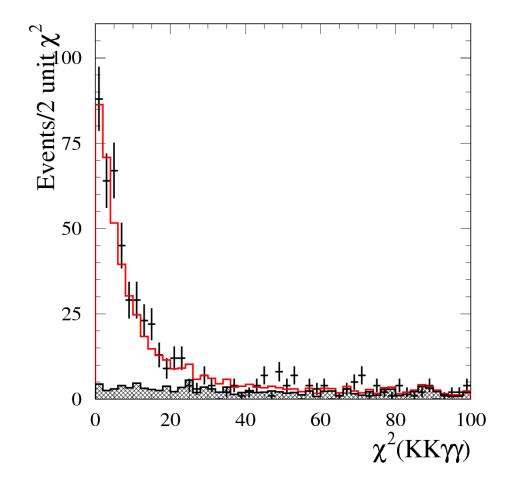
$$p(q^{2}) = \sqrt{\frac{(s - m_{K}^{2} - q^{2})^{2} - 4m_{K}^{2} q^{2}}{4s}},$$


### процесс $e^+e^- \rightarrow K^+K^-\pi^0$

В этой модели первый член описывает вклад низколежащих резонансов  $\rho(770)$ ,  $\omega(782)$  и  $\phi(1020)$ . Параметры  $M_0$  и  $\Gamma_0$  были взяты равными массе и ширине  $\phi(1020)$ . Второй член описывает суммарный вклад всех возбужденных векторных резонансов. Параметры  $A_0$ ,  $A_1$ ,  $M_1$ ,  $\Gamma_1$  и  $\alpha$  определялись аппроксимацией.

Модель удовлетворительно описывает данные:  $\chi 2/$  ndf =33.2/22 ( $P(\chi 2)=6\%$ ), где ndf число степеней свободы.

Полученные в результате аппроксимации значения массы и ширины  $M_1$ =1675 ±11\$ МэВ/с²,  $\Gamma_1$ =147 ± 21 МэВ оказались близки к табличным значениям для  $\phi$ (1680) (PDG).


Это указывает, что вклад этого резонанса доминирует в сечении процесса .



| $\sqrt{s} \ (\Gamma \circ B)$ | $L \ ({\rm H}{\rm G}^{-1})$ | N                       | $\varepsilon_0$ | $1 + \delta$ | σ <sub>0</sub> (нб)           |
|-------------------------------|-----------------------------|-------------------------|-----------------|--------------|-------------------------------|
| 1.277                         | 763                         | $0.7 \pm 1.7 \pm 1.3$   | 0.011           | 0.810        | $0.099 \pm 0.245 \pm 0.189$   |
| 1.357                         | 845                         | $1.5\pm2.2\pm0.6$       | 0.020           | 0.871        | $0.104 \pm 0.149 \pm 0.044$   |
| 1.423                         | 588                         | $3.4\pm2.4\pm1.0$       | 0.035           | 0.812        | $0.204 \pm 0.146 \pm 0.060$   |
| 1.438                         | 1505                        | $5.5\pm3.7\pm1.7$       | 0.045           | 0.819        | $0.098 \pm 0.066 \pm 0.031$   |
| 1.471                         | 619                         | $9.0 \pm 3.8 \pm 0.7$   | 0.064           | 0.838        | $0.273 \pm 0.114 \pm 0.022$   |
| 1.494                         | 754                         | $14.4 \pm 5.0 \pm 0.1$  | 0.075           | 0.830        | $0.306 \pm 0.107 \pm 0.002$   |
| 1.517                         | 1448                        | $83.2 \pm 10.6 \pm 4.3$ | 0.083           | 0.846        | $0.820 \pm 0.104 \pm 0.042$   |
| 1.543                         | 578                         | $32.9 \pm 6.5 \pm 0.1$  | 0.088           | 0.847        | $0.761 \pm 0.151 \pm 0.002$   |
| 1.572                         | 533                         | $38.8 \pm 7.3 \pm 0.7$  | 0.091           | 0.858        | $0.934 \pm 0.176 \pm 0.017$   |
| 1.595                         | 1284                        | $94.6 \pm 10.8 \pm 5.6$ | 0.087           | 0.873        | $0.969 \pm 0.110 \pm 0.051$   |
| 1.623                         | 545                         | $34.2 \pm 7.5 \pm 2.5$  | 0.089           | 0.880        | $0.804 \pm 0.177 \pm 0.064$   |
| 1.643                         | 499                         | $33.0 \pm 6.3 \pm 4.3$  | 0.081           | 0.898        | $0.911 \pm 0.173   \pm 0.109$ |
| 1.672                         | 1397                        | $59.1 \pm 8.9 \pm 2.8$  | 0.071           | 1.010        | $0.593 \pm 0.090 \pm 0.035$   |
| 1.693                         | 490                         | $19.2 \pm 5.0 \pm 2.3$  | 0.063           | 1.101        | $0.563 \pm 0.147 \pm 0.105$   |
| 1.720                         | 1051                        | $13.1 \pm 5.2 \pm 1.5$  | 0.060           | 1.514        | $0.137 \pm 0.082 \pm 0.062$   |
| 1.742                         | 529                         | $0.0\pm1.3\pm0.9$       | 0.057           | 2.363        | $0.000 \pm 0.043 \pm 0.026$   |
| 1.764                         | 1290                        | $16.0 \pm 6.9 \pm 0.8$  | 0.048           | 6.948        | $0.037 \pm 0.111 \pm 0.212$   |
| 1.797                         | 1424                        | $0.0\pm2.6\pm0.1$       | 0.052           | 4.840        | $0.000 \pm 0.035 \pm 0.001$   |
| 1.826                         | 529                         | $4.2\pm2.9\pm2.2$       | 0.047           | 1.334        | $0.127 \pm 0.117 \pm 0.131$   |
| 1.844                         | 1006                        | $5.1\pm3.6\pm3.7$       | 0.048           | 1.068        | $0.100 \pm 0.070 \pm 0.089$   |
| 1.873                         | 1606                        | $4.8\pm3.7\pm0.0$       | 0.047           | 0.926        | $0.069 \pm 0.052 \pm 0.004$   |
| 1.893                         | 624                         | $0.0\pm0.9\pm0.8$       | 0.046           | 0.893        | $0.001 \pm 0.035 \pm 0.031$   |
| 1.903                         | 1456                        | $3.7\pm3.7\pm4.0$       | 0.045           | 0.903        | $0.063 \pm 0.064 \pm 0.064$   |
| 1.932                         | 2235                        | $7.0 \pm 5.8 \pm 5.9$   | 0.041           | 0.871        | $0.086 \pm 0.071 \pm 0.068$   |
| 1.962                         | 971                         | $3.8\pm3.1\pm1.5$       | 0.039           | 0.882        | $0.113 \pm 0.094 \pm 0.040$   |
|                               |                             |                         |                 |              |                               |

Систематическая неопределенность эффективности регистрации зависит от условий отбора событий искомого процесса. Наиболее критическими являются параметры  $\chi^2(KK\gamma\gamma)$  и dE/dx. Для получения величины систематических ошибок, связанных с ограничениями на эти параметры, были получены результаты выделения событий процесса  $e^+e^- \rightarrow K^+$   $K^ \pi^0$  с измененными ограничениями на эти параметры. Для определения систематической ошибки, связанной с ограничением  $\chi^2(KK\gamma\gamma)$  < 40, вводилось ограничение  $\chi^2(KK\gamma\gamma)$  < 80. Систематическая ошибка, связанная с ограничением dE/dx>1, определялась по результатам, полученным с ограничением dE/dx > 0.8. Для определения влияния ограничения Eextra < 0.3, вводилось ограничение Eextra < 0.5. Было найдено, что суммарная систематическая ошибка, связанная с условиями отбора, не превышает 8%.

Распределение по параметру  $\chi 2(KK\gamma\gamma)$  для событий из интервала  $1.5 < \sqrt{s} < 1.72$  ГэВ, удовлетворяющих условию  $100 \le m_{\gamma\gamma} \le 170$  MeV/c².



Поправка, связанная с идентификацией каона по черенковскому счетчику < 1.2%.

Поправка к эффективности регистрации, связанная с точностью определения геометрии активной области черенковского счетчика. Отличие этой поправки от 1 не превышает 0.3%.

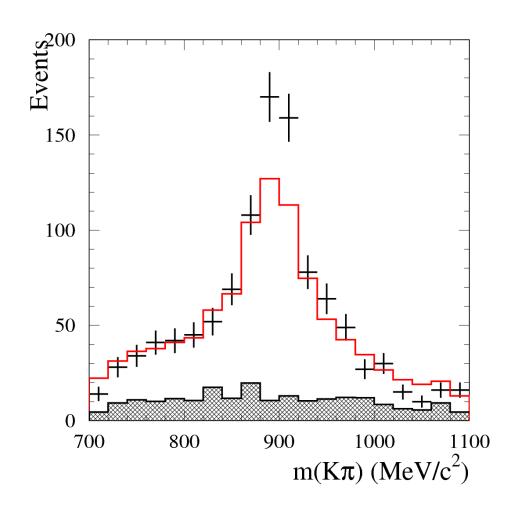
Систематическая неопределенность в эффективности реконструкции трека, возникающая из-за неточности моделирования ядерного взаимодействия каонов, оценивалась в 0.1%.

Разница между экспериментом и моделированием в конверсии фотонов в веществе перед дрейфовой камерой была измерена по событиям процесса e+e- →γγ и составила 0.7%.

Суммарная систематическая погрешность эффективности регистрации составляет 8%.

### Систематические погрешности

Приведенные выше фоновые процессы описывают примерно 80% фона, наблюдаемого в эксперименте. Чтобы оценить систематику, возникающую из −за неточности описания формы фона, мы проводили аппроксимацию, в которой коэффициент при расчетном фоне был свободным. Разница между результатам двух аппроксимаций в числе сигнальных событий рассматривалась как мера систематической неопределенности. Полученные числа событий процесса со статистическими и систематическими ошибками для различных энергетических точек приведены в таблице. В диапазоне √s=1.45 - 1.70 ГэВ систематическая ошибка составляет около 5%.


В работе BaBar показано, что процесс  $e^+e^- \to K^+ K^- \pi^0$  идет через промежуточные состояния  $K^{*\pm}(892) K^{\mp}$  или  $K_2^{*\pm}(1430) K^{\mp}$ .

На рис. приведено распределение инвариантных масс систем Кπ<sup>0</sup> для событий из энергетического интервала

1.5 <√s <1.72 ГэВ.

Вклад фона оценивался из краев в распределении по инвариантной массе двух фотонов.

В нашей области энергии доминирующим является промежуточное состояние  $K^*$  .



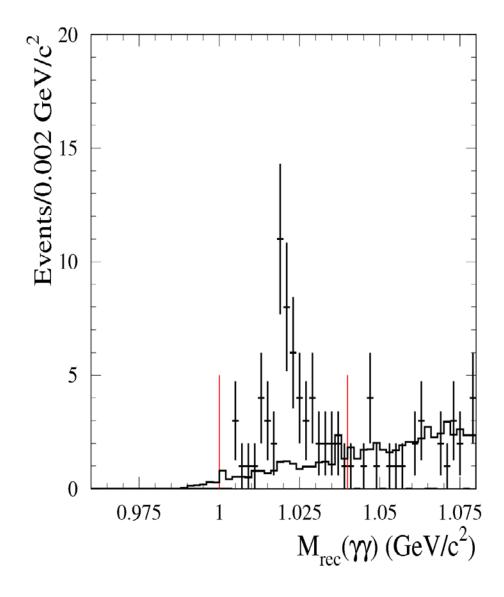
### Процесс $e^+e^- o \phi \pi^0 o K^+ K^- \pi^0$

Анализировались события с массой отдачи пары фотонов  $m_{rec}(\pi^0) < 1.05 \ \Gamma \ni B/c^2$ . При этом мы отказались от требований на величину минимального и максимального импульса заряженной частицы, восстановленных в модели  $e^+e^- \rightarrow K^+K^- \gamma \gamma$ . Для подавления фона от процесса радиационного возврата на резонанс  $e^+e^- \rightarrow \phi(1020) \gamma \rightarrow K^+K^- \gamma$  было введено дополнительное условие: отличие нормированной энергии наиболее энергичного фотона в событии  $2E_{v,max}$  /Vs от (1- $M_{\phi}^2$ /s), где  $M_{\phi}$ - масса  $\phi(1020)$ , должно превышать 0.1.



### Процесс $e^+e^- o \phi \pi^0 o K^+ K^- \pi^0$

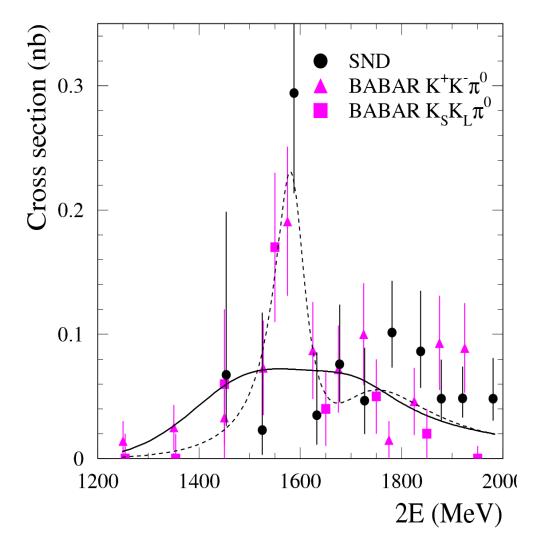
Распределение по  $M_{rec}(\gamma\gamma)$ , получено при ограничении  $0.10 < m_{\nu\nu} < 0.17 \ \Gamma \ni B/c^2$  ,


в котором ясно виден пик от ф(1020).

Приведено также ожидаемое по моделированию распределение фона. Доминирующими источниками фона являются процессы  $e+e- \to K^*K \to K^+K^-\pi^0$  и  $e+e- \to K^+K^-\gamma$ . Видно, что моделирование хорошо воспроизводит как полное число фоновых событий, так и форму фонового распределения.

В распределении по  $M_{rec}$  выделялись две области: сигнальная  $1.00 < M_{rec} < 1.04 \ GeV/c^2$  и фоновая  $1.04 < M_{rec} < 1.08 \ GeV/c^2$  Число событий процесса  $e^+e^- \to \varphi \pi^0 \to K^+K^-\pi^0$  вычислялось следующим образом:

N = (N1 - kb\*N2) / (1-ks\*kb),


где N1 и N2 --- числа событий в сигнальной и фоновой областях в экспериментальных данных, kb --- отношение N1/N2 для фона, ks - отношение N2/N1 для сигнала. Коэффициенты kb и ks определялись по моделированию.



### Процесс $e^+e^- ightarrow \phi \pi^0 ightarrow K^+ K^- \pi^0$

Для получения Борновского сечения необходимо ввести радиационные поправки. Для их вычисления проводилась совместная аппроксимация данных СНД и данных двух измерений BABAR.

Борновское сечение описывалось когерентной суммой вкладов резонансов  $\rho(1450)$  и  $\rho(1700)$  (модель 1). В этой модели массы и ширины резонансов фиксировались на табличных значениях (PDG), а сечения в максимуме резонансов и относительная фаза между их амплитудами были свободными параметрами. Полученное Борновское сечение процесса  $e+e- \rightarrow \phi \pi^0$  приведено в таблице и показано на рис. вместе с измерениями BABAR и аппроксимирующей кривой. В целом качество аппроксимации является неудовлетворительным ( $\chi 2/$  ndf=50/28).



### Процесс $e^+e^- ightarrow \phi \pi^0 ightarrow K^+ K^- \pi^0$

| $\sqrt{s}$ (GeV) | $\sigma$ (nb)             | $\sqrt{s} \; (\text{GeV})$ | $\sigma$ (nb)             | $\sqrt{s}(\text{GeV})$ | $\sigma$ (nb)             |
|------------------|---------------------------|----------------------------|---------------------------|------------------------|---------------------------|
| 1.40 - 1.50      | $0.067^{+0.131}_{-0.041}$ | 1.65 - 1.70                | $0.076^{+0.048}_{-0.031}$ | 1.85 - 1.90            | $0.048^{+0.031}_{-0.018}$ |
| 1.50 - 1.55      | $0.023^{+0.094}_{-0.020}$ | 1.70 - 1.75                | $0.047^{+0.043}_{-0.027}$ | 1.90 - 1.95            | $0.049^{+0.025}_{-0.016}$ |
| 1.55 - 1.60      | $0.294^{+0.110}_{-0.081}$ | 1.75 - 1.80                | $0.101^{+0.041}_{-0.028}$ | 1.95 - 2.10            | $0.048^{+0.033}_{-0.018}$ |
| 1.60 - 1.65      | $0.035^{+0.050}_{-0.024}$ | 1.80 - 1.85                | $0.086^{+0.049}_{-0.029}$ |                        |                           |

### Процесс $e^+e^- o \phi \pi^0 o K^+ K^- \pi^0$

Лучшее описание данных дает модель с двумя резонансами, в которой масса и ширина одного из них фиксировалась на табличных значениях для ρ(1700), а параметры второго были свободными (модель 2). В результате аппроксимации были получены следующие масса и ширина для этого резонанса:  $1585 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \pm 15 \text{ M} \Rightarrow \text{B} \text{ и } 75 \text{ M} \Rightarrow \text{B} \text{ I} \text{$ 30 МэВ. Для этой модели  $\chi$ 2/ndf=38/26 (Р(χ2)=6%). Аппроксимирующая кривая для модели 2 также показана на рис. Следует отметить, что векторный резонанс с такими параметрами в таблице свойств частиц (PDG) отсутствует.



Процесс 
$$e^+e^- o \phi \pi^0 o K^+ K^- \pi^0$$

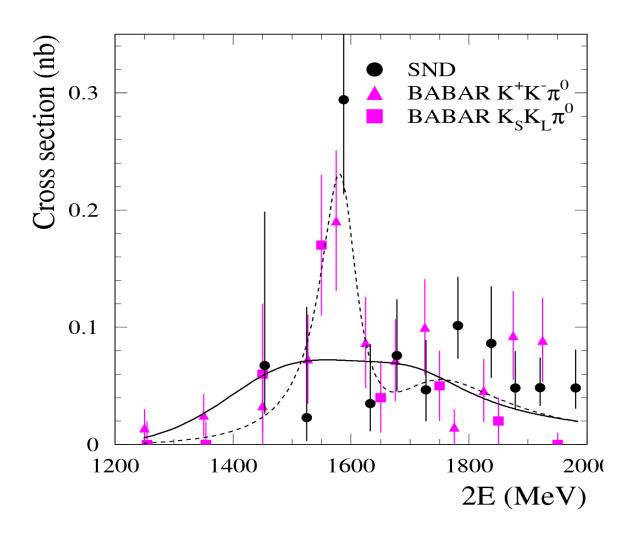
Разница в радиационных поправках между моделями 1 и 2 использовалась для оценки модельной ошибки Борновского сечения. Она составляет 14% для интервала 1.6 -1.65 ГэВ, 8% - для интервала 1.65-1.7 ГэВ, и не превышает 6% для остальных точек. Систематическая погрешность в измерении сечения определяется также как для сечения е⁺е⁻ → K⁺К⁻π⁰ и оценивается в 10%.

### Заключение

В данной работе представлены результаты изучения процесса  $e^+e^- o K^+K^-\pi^0$  в диапазоне энергий от 1.28 до 2 ГэВ в системе центра масс.

Анализировались данные с интегральной светимостью 26.4 пб<sup>-1</sup>, накопленные в эксперименте с детектором СНД на е+е- коллайдере ВЭПП-2000 в 2010, 2011 гг.

В работе показано, что в исследуемом диапазоне энергий процесс  $e^+e^- o K^+K^-\pi^0$  идет в основном через промежуточное состояние  $K^*(892)^\pm K^{-+}$ . Имеется также сигнал от промежуточного состояния  $\phi\pi^0$ .


Отдельно измерены сечения процессов  $e^+e^- \to K^+K^-\pi^0$  (без  $\phi\pi^0$ ) и  $e^+e^- \to \phi\pi^0$ . Измеренные сечения неплохо согласуются с предыдущими измерениями в эксперименте BABAR и имеют сравнимую точность.

## Спасибо за внимание.

### Процесс $e^+e^- o \phi \pi^0 o K^+ K^- \pi^0$

Для получения Борновского сечения необходимо ввести радиационные поправки. Для их вычисления проводилась совместная аппроксимация данных СНД и данных двух измерений BABAR.

Борновское сечение описывалось когерентной суммой вкладов резонансов  $\rho(1450)$  и  $\rho(1700)$  (модель 1). В этой модели массы и ширины резонансов фиксировались на табличных значениях (PDG), а сечения в максимуме резонансов и относительная фаза между их амплитудами были свободными параметрами. Полученное Борновское сечение процесса  $e+e- \rightarrow \phi\pi^0$  приведено в таблице и показано на рис. вместе с измерениями BABAR и аппроксимирующей кривой. Видно, что все три измерения неплохо согласуются с друг другом ниже 1.75 ГэВ. В диапазоне 1.75--2 ГэВ имеется не статистический разброс измерений. Аппроксимирующая кривая описывает поведение сечения, наблюдаемое в эксперименте, везде кроме узкого интервала вблизи Vs=1.58 ГэВ, где превышение над кривой наблюдается во всех трех измерениях. В целом качество аппроксимации является неудовлетворительным ( $\chi$ 2/ ndf=50/28).



Разница в радиационных поправках между моделями 1 и 2 использовалась для оценки модельной ошибки борновского сечения. Она составляет 14% для интервала 1.6 -1.65 ГэВ, 8% - для интервала 1.65-1.7 ГэВ, и не превышает 6% для остальных точек. Систематическая погрешность в измерении сечения определяется также как для сечения  $e^+e^- \rightarrow K^+K^-\pi^0$ и оценивается в 10%.