

Измерение сечения процесса $e^+e^- \rightarrow K^+ K^- \pi^0$ на детекторе СНД при энергии в системе центра масс $\sqrt{\{s\}} = 1.3 - 2.0$ ГэВ.

Е.В. Пахтусова

Институт ядерной физики им. Г.И. Будкера СО РАН

Сессия-конференция СЯФ ОФН РАН

10-12 March 2020

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

Содержание

1. Мотивация

- 2. Детектор, коллайдер, эксперимент
- 3. Отбор событий процесса $e^+e^- \longrightarrow K^+ \ K^- \ \pi^0$
- 4. Идентификация каонов
- 5. Подавление фона
- 6. Распределения событий
- 7. Сечение процесса $e^+e^- \rightarrow K^+ K^- \pi^0$
- 8. Отбор событий процесса $\mathrm{e}^+\mathrm{e}^- o \phi \pi^0 o \mathrm{K}^+ \mathrm{K}^- \pi^0$

9. Сечение процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+ K^- \pi^0$

10. Заключение

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$ является одним из трех зарядовых состояний процесса $e^+e^- \rightarrow K$ anti-K π , который дает значимый вклад (около 12% при энергии в системе центра масс $\sqrt{s} \approx 1.65 \ \Gamma$ эВ) в полное сечение e^+e^- аннигиляции в адроны.

Является ключевым процессом для измерения параметров резонанса ф(1680).

Реакция $e^+e^- \rightarrow K^+ K^- \pi^0$ впервые наблюдалась в эксперименте DM2 (1991)

(D. Bisello et al., Z. Phys. C52, 227 (1991)). Точность измерения ее сечения была существенно улучшена в эксперименте BABAR (2008) (B.Aubert et al., Phys.Rev. D77, 092002 (2008)), в котором этот процесс исследовался методом радиационного возврата (ISR). В этой же работе было показано, что процесс $e^+e^- \rightarrow K^+ K^- \pi^0$ идет через промежуточные состояния $K^{*\pm}(892) K^{-+}$, $\phi(1020) \pi^0$ и $K_2^{*\pm}(1430) K^{-+}$. В области энергии ВЭПП-2000 $\sqrt{s} < 2$ ГэВ вкладом промежуточного состояния $K_2^{*\pm}(1430)K^{-+}$ можно пренебречь. Сечение процесса $e^+e^- \rightarrow \phi(1020) \pi^0$ было также измерено в эксперименте BABAR (2017) в конечном состоянии $K_S K_I \pi^0$. (J.P. Lees et al., Phys. Rev. D95, 052001 (2017)). В данной работе сечение процесса $e^+e^- \rightarrow K^+ K^- \pi^0$ было измерено в диапазоне энергий в системе центра масс \sqrt{s} =1.28 - 2.00 ГэВ. Для анализа использовались данные с интегральной светимостью 26.4 пб⁻¹, накопленные в эксперименте с детектором СНД на е⁺е⁻-коллайдере ВЭПП-2000.

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

SND detector (since 1995)

- 1 vacuum chamber, 2 tracking DC,
- 3 aerogel n=1.13, 1.05 4 Nal(Tl) crystals,
- 5 phototriodes, 6 absorber, 7–9 muon

detector, 10 – SC solenoids

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

События процесса e⁺e⁻ → K⁺ K⁻ π⁰ регистрируются как пара заряженных частиц, сопровождаемая двумя фотонами от распада π⁰. События могут содержать дополнительные треки в дрейфовой камере, источником которых могут быть δ-электроны или пучковый фон. В событии могут появляться дополнительные фотоны от пучкового фона или ядерного взаимодействию каонов в калориметре.

Мы отбираем события с двумя или тремя заряженными частицами и с числом фотонов больше одного.

условия отбора:

- $1 < nc \le 3$ $0.2 \le Eton \le 0.85$
- nn > 1 | z₀(1,2) | ≤ 10 см

2 заряженные частицы должны находиться в области встречи пучков, т.е. должны выполняться условия на расстояние между треком и осью пучка:

|d₀(i) | < 0.3 см, i=1,2

Если в событии имеется три заряженных частицы, то выбираются две из них, имеющие лучший χ2 реконструкции общей вершины, а третья должна быть вне области встречи пучков,

|d₀(3)| > 0.2 см.

Процесс $e^+e^- \rightarrow K^+ K^- \pi^0$

e+ e- \rightarrow K⁺ K⁻ π^0 $\chi 2$ (ККүү)Основными фоновыми процессами
являются: $\chi 2(3\pi) (\pi^+ \pi^- \gamma \gamma)$ e+ e- $\rightarrow \pi^+ \pi^- \pi^0 \pi^0$ $\chi 2(3\pi) (\pi^+ \pi^- \gamma \gamma)$ e+ e- $\rightarrow \pi^+ \pi^- \pi^0 \pi^0$ $\chi 2(4\pi) (\pi^+ \pi^- \pi^0 \pi^0)$ e+ e- $\rightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0$ $\chi 2(KK\gamma\gamma) < 40$

- $e^+ e^- \rightarrow K_s K^{\pm} \pi^{-+} \chi^2(3\pi) > 20$
- $e^+ e^- \rightarrow K_L K^{\pm} \pi^{-+} \qquad \chi^2(4\pi) > 20;$
- $e\text{+}e\text{-} \rightarrow \ \text{K}^{\scriptscriptstyle +} \ \text{K}^{\scriptscriptstyle -} \ \pi^0 \ \pi^0$
- $e+e- \rightarrow K_{S} K^{\pm} \pi^{-+} \pi^{0}$
- $e\text{+}e\text{-} \rightarrow \ \text{K}_{\text{L}} \ \text{K}^{\pm} \ \pi^{\text{-+}} \pi^{0}$

Идентификация каонов

Идентификация каонов производилась с использованием информации о срабатывании пороговых черенковских счетчиков (АЧС) и об удельных ионизационных потерях заряженных частиц (dE/dx) в дрейфовой камере.

АЧС срабатывает от π-мезонов с импульсами выше 265 МэВ/с² и не срабатывает от К-мезонов при всех возможных на ВЭПП-2000 значениях импульсов.

Калибровка ионизационных потерь, необходимая для учета изменений газового усиления в дрейфовой камере во время набора данных, проводилась по событиям упругого е+е- рассеяния.

Пионы имеют слабую зависимость dE/dx от импульса частицы, а для каонов процесса e⁺ e⁻ → K⁺ K⁻ π⁰ в рассматриваемом диапазоне энергии пучка накопителя импульсы изменяются от 100 MэB/c² до 800 MэB/c², приводя к сильной зависимости dE/dx от импульса частицы.

Распределение энерговыделения dE/dx в ДК Распределение плотности вероятности энерговыделения dE/dx пионов и каонов в ДК. Гистограмма - моделирование, точки с ошибками – эксперимент

Идентификация каонов

Для отбора событий процесса е⁺ e[−] → K⁺ K[−] π⁰ требовалось, чтобы обе заряженные частицы попали в АЧС. Для этого вводится ограничение на полярный угол частицы

 $40^{\circ} \le \theta \le 140^{\circ}$

При этом необходимо, чтобы хотя бы одна заряженная частица попадала в активную область черенковского счетчика и не имела сигнала в этом счетчике. Для подавления фона, содержащего заряженные пионы, вводится ограничение dE/dx > 1, если восстановленный в модели е⁺е⁻ → K⁺ K⁻ γ γ импульс частицы меньше 300 MэB/c².

Для частиц, не попавших в рабочую область АЧС, каонами считаются частицы, имеющие импульс P< 450 MэB/c² в модели е⁺e⁻ → K⁺K⁻γγ и dE/dx > 1. При ограничении dE/dx > 1 эффективность регистрации событий, содержащих пионы, падает вдвое (для процесса е⁺e⁻ → π⁺ π⁻ π⁰ π⁰).

Суммарная энергия фотонов, не входящих в π⁰, нормированная на энергию в пучке

Подавление фона

Для дополнительного подавления фоновых процессов использовались ограничения на минимальный и максимальный импульс частицы, восстановленной в модели К⁺ К⁻ γγ как каон. Минимальное допустимое значение импульса частицы в соответствии с моделированием процесса е⁺ е- → K⁺ K⁻ π⁰ равно 100 МэB/с², а максимальное допустимое значение импульса частицы зависит от энергии в пучке. Распределение по максимальному значению импульса каонов в модели К+К-үү при энергии в пучке 900 МэВ.

Подавление фона

Для исключения фона от коллинеарных событий процессов e⁺e[−] → e⁺e[−], π⁺π⁻, K⁺K[−] вводились ограничения на отклонения от коллинеарности по азимутальному и полярному углам заряженных частиц:

$$|\Delta \theta| > 5^{\circ}, |\Delta \phi| > 5^{\circ}$$

Исключение из рассмотрения событий процесса е⁺е[−] → φπ⁰ обеспечивалось ограничением на массу отдачи π⁰:

 $m_{rec}(\pi^0) > 1050 \text{ M} \Rightarrow B/c^2.$

Определение числа событий

Для отобранных событий строилась инвариантная масса 2-х фотонов в модели К+К-үү. События искомого процесса отбирались в диапазоне инвариантной массы пары фотонов

 $30 \text{ MeV/c}^2 < m_{\gamma\gamma} < 250 \text{ MeV/c}^2$.

Распределение экспериментальных событий по инвариантной массе 2γ аппроксимировалось суммой аналогичного нормированного распределения, полученного моделированием процесса К⁺К⁻π⁰ с произвольным коэффициентом, равным числу событий искомого процесса, расчетного значения вкладов перечисленных фоновых процессов, умноженного на коэффициент, определяемый при фитировании в пределах 10% отличия от 1, и оставшегося неучтенного фона, аппроксимированного линейной функцией.

процесс
$$e^+e^
ightarrow$$
 K^+ $K^-\pi^0$

$$\sigma_{\rm vis}(\sqrt{s}) = \int_{0}^{z_{\rm max}} dz \sigma_0(\sqrt{s(1-z)}) F(z,s) \varepsilon(\sqrt{s},z),$$

$$\begin{split} F(z,s) & - вероятность излучения фотона с энергией z\sqrt{s}/2 \\ \mathcal{E}(\sqrt{s},z) & - эффективность регистрации \\ z_{max} &= 1 - (m_{\pi 0} + 2mK)^2/s \\ \sigma_{vis,i} &= N_{exp,i}/L_i \\ 1 + \delta(s) &= \sigma_{vis} (\sqrt{s}) / (\varepsilon_0(\sqrt{s})\sigma_0(\sqrt{s})) \\ \varepsilon_0(\sqrt{s}) &= \mathcal{E}(\sqrt{s}, z = 0) \\ \sigma_{0,i} &= \frac{\sigma_{vis,i}}{\varepsilon_0(\sqrt{s})(1 + \delta(s))} \end{split}$$

Эффективность регистрации событий процесса как функция Vs и энергии фотона, излученного из начального состояния, определялась по моделированию на основе модели

 $e+e- \rightarrow K^{*\pm}(892) K^{\mp} \rightarrow K^+ K^- \pi^0$.

Характерная зависимость эффективности от энергии фотона, полученная при √s =1.575 ГэВ, показана на рисунке.

Значения эффективности при нулевой энергии фотона ε₀(√s)=ε(√s,0) для разных точек по энергии приведены в таблице.

$$e^+e^- \rightarrow K^*(892)^0 \ \overline{K} \rightarrow K^+ \ K^- \ \pi^0$$

В работе BaBar были отдельно измерены изоскалярное и изовекторное сечения для процесса е+е- → K*anti-K и показано, что изоскалярная амплитуда доминирует только вблизи максимума резонанса ф(1680). Ниже 1.55 ГэВ и выше 1.8 ГэВ изоскалярная и изовекторная амплитуды одного порядка. В данной работе для описания борновского сечения процесса мы используем упрощенную двух-резонансную модель

$$\sigma_0(\sqrt{s}) = \left| A_0 B W_0(s) + e^{i\alpha} A_1 B W_1(s) \right|^2 \frac{P(s)}{s^{3/2}}$$

где $BW_i(s) = M_i\Gamma_i(M_i^2 - s) - i\sqrt{s}\Gamma_i$, M_i и Γ_i — массы и ширины двух эффективных резонансов, A_i — их вещественные амплитуды, а α — относительная фаза между амплитудами. Функция P(s) описывает энергетическую зависимость фазового объема системы $K^*(892)^0\bar{K}$:

$$P(s) = \frac{1}{\pi} \int_{(m_{\pi}+m_{K})^{2}}^{(\sqrt{s}-m_{K})^{2}} \frac{m_{K^{*}}\Gamma_{K^{*}}}{(q^{2}-m_{K^{*}}^{2})^{2}+m_{K^{*}}^{2}\Gamma_{K^{*}}^{2}} p^{3}(q^{2})dq^{2}dqq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^{2}dq^$$

процесс $e^+e^- \rightarrow K^+K^-\pi^0$

В этой модели первый член описывает вклад низколежащих резонансов $\rho(770)$, $\omega(782)$ и $\phi(1020)$. Параметры M_0 и Γ_0 были взяты равными массе и ширине $\phi(1020)$. Второй член описывает суммарный вклад всех возбужденных векторных резонансов. Параметры A_0 , A_1 , M_1 , Γ_1 и α определялись аппроксимацией.

Модель удовлетворительно описывает данные: χ2/ ndf =33.2/22 (P(χ2)=6%), где ndf число степеней свободы.

Полученные в результате аппроксимации значения массы и ширины M_1 =1675 ±11\$ MэB/c², Γ_1 =147 ± 21 МэB оказались близки к табличным значениям для ф(1680) (PDG).

Это указывает, что вклад этого резонанса доминирует в сечении процесса.

\sqrt{s} (ГэВ)	L (нб ⁻¹)	Ν	ε_0	$1 + \delta$	σ_0 (нб)
1.277	763	$0.7\pm1.7\pm1.3$	0.011	0.810	$0.099 \pm 0.245 \pm 0.189$
1.357	845	$1.5\pm2.2\pm0.6$	0.020	0.871	$0.104 \pm 0.149 \pm 0.044$
1.423	588	$3.4\pm2.4\pm1.0$	0.035	0.812	$0.204 \pm 0.146 \pm 0.060$
1.438	1505	$5.5\pm3.7\pm1.7$	0.045	0.819	$0.098 \pm 0.066 \pm 0.031$
1.471	619	$9.0\pm3.8\pm0.7$	0.064	0.838	$0.273 \pm 0.114 \pm 0.022$
1.494	754	$14.4\pm5.0\pm0.1$	0.075	0.830	$0.306 \pm 0.107 \pm 0.002$
1.517	1448	$83.2 \pm 10.6 \pm 4.3$	0.083	0.846	$0.820 \pm 0.104 \pm 0.042$
1.543	578	$32.9\pm6.5\pm0.1$	0.088	0.847	$0.761 \pm 0.151 \pm 0.002$
1.572	533	$38.8 \pm 7.3 \pm 0.7$	0.091	0.858	$0.934 \pm 0.176 \pm 0.017$
1.595	1284	$94.6 \pm 10.8 \pm 5.6$	0.087	0.873	$0.969 \pm 0.110 \pm 0.051$
1.623	545	$34.2 \pm 7.5 \pm 2.5$	0.089	0.880	$0.804 \pm 0.177 \pm 0.064$
1.643	499	$33.0 \pm 6.3 \pm 4.3$	0.081	0.898	$0.911 \pm 0.173 \pm 0.109$
1.672	1397	$59.1\pm8.9\pm2.8$	0.071	1.010	$0.593 \pm 0.090 \pm 0.035$
1.693	490	$19.2\pm5.0\pm2.3$	0.063	1.101	$0.563 \pm 0.147 \pm 0.105$
1.720	1051	$13.1\pm5.2\pm1.5$	0.060	1.514	$0.137 \pm 0.082 \pm 0.062$
1.742	529	$0.0\pm1.3\pm0.9$	0.057	2.363	$0.000 \pm 0.043 \pm 0.026$
1.764	1290	$16.0\pm6.9\pm0.8$	0.048	6.948	$0.037 \pm 0.111 \pm 0.212$
1.797	1424	$0.0\pm2.6\pm0.1$	0.052	4.840	$0.000 \pm 0.035 \pm 0.001$
1.826	529	$4.2\pm2.9\pm2.2$	0.047	1.334	$0.127 \pm 0.117 \pm 0.131$
1.844	1006	$5.1\pm3.6\pm3.7$	0.048	1.068	$0.100 \pm 0.070 \pm 0.089$
1.873	1606	$4.8\pm3.7\pm0.0$	0.047	0.926	$0.069 \pm 0.052 \pm 0.004$
1.893	624	$0.0\pm0.9\pm0.8$	0.046	0.893	$0.001 \pm 0.035 \pm 0.031$
1.903	1456	$3.7\pm3.7\pm4.0$	0.045	0.903	$0.063 \pm 0.064 \pm 0.064$
1.932	2235	$7.0\pm5.8\pm5.9$	0.041	0.871	$0.086 \pm 0.071 \pm 0.068$
1.962	971	$3.8 \pm 3.1 \pm 1.5$	0.039	0.882	$0.113 \pm 0.094 \pm 0.040$

Систематическая неопределенность эффективности регистрации зависит от условий отбора событий искомого процесса. Наиболее критическими являются параметры $\chi^2(KK\gamma\gamma)$ и dE/dx. Для получения величины систематических ошибок, связанных с ограничениями на эти параметры, были получены результаты выделения событий процесса $e^+e^- \rightarrow K^+ K^- \pi^0$ с измененными ограничениями на эти параметры. Для определения систематической ошибки, связанной с ограничением $\chi^2(KK\gamma\gamma) < 40$, вводилось ограничение $\chi^2(KK\gamma\gamma) < 80$. Систематическая ошибка, связанная с ограничением dE/dx>1, определялась по результатам, полученным с ограничением dE/dx > 0.8. Для определения влияния ограничения Eextra <0.3, вводилось ограничение Eextra <0.5. Было найдено, что суммарная систематическая ошибка, связанная с связанная с условиями отбора, не превышает 8%.

Распределение по параметру χ2(ККүү) для событий из интервала 1.5 < √s < 1.72 ГэВ, удовлетворяющих условию 100 ≤ m_{γγ} ≤ 170 MeV/c².

Поправка, связанная с идентификацией каона по черенковскому счетчику < 1.2%.

Поправка к эффективности регистрации, связанная с точностью определения геометрии активной области черенковского счетчика. Отличие этой поправки от 1 не превышает 0.3%.

Систематическая неопределенность в эффективности реконструкции трека, возникающая из-за неточности моделирования ядерного взаимодействия каонов, оценивалась в 0.1%.

Разница между экспериментом и моделированием в конверсии фотонов в веществе перед дрейфовой камерой была измерена по событиям процесса е+е- →үү и составила 0.7%.

Суммарная систематическая погрешность эффективности регистрации составляет 8%.

Систематические погрешности

Приведенные выше фоновые процессы описывают примерно 80% фона, наблюдаемого в эксперименте. Чтобы оценить систематику, возникающую из –за неточности описания формы фона, мы проводили аппроксимацию, в которой коэффициент при расчетном фоне был свободным. Разница между результатам двух аппроксимаций в числе сигнальных событий рассматривалась как мера систематической неопределенности. Полученные числа событий процесса со статистическими и систематическими ошибками для различных энергетических точек приведены в таблице. В диапазоне √s=1.45 - 1.70 ГэВ систематическая ошибка В работе BaBar показано, что процесс е⁺е⁻ \rightarrow K⁺ K⁻ π^0 идет через промежуточные состояния K^{*±}(892) K[∓] или K₂^{*±}(1430) K[∓].

На рис. приведено распределение инвариантных масс систем Кπ⁰ для событий из энергетического интервала

1.5 <√s <1.72 ГэВ.

Вклад фона оценивался из краев в распределении по инвариантной массе двух фотонов.

В нашей области энергии доминирующим является промежуточное состояние К*±(892) К[∓].

Процесс $e^+ e^- \rightarrow \phi \pi^0 \rightarrow K^+ K^- \pi^0$

Анализировались события с массой отдачи пары фотонов $m_{rec}(\pi^0) < 1.05$ ГэВ/с². При этом мы отказались от требований на величину минимального и максимального импульса заряженной частицы, восстановленных в модели $e^+e^- \rightarrow K^+K^- \gamma \gamma$. Для подавления фона от процесса радиационного возврата на резонанс $e^+e^- \rightarrow \phi(1020) \gamma \rightarrow K^+K^- \gamma$ было введено дополнительное условие: отличие нормированной энергии наиболее энергичного фотона в событии $2E_{v,max}$ /Vs от (1- M_{ϕ}^2 /s), где M_{ϕ} - масса ф(1020), должно превышать 0.1.

Распределение по M_{rec}(үү), получено при ограничении

0.10 < m_{yy} < 0.17 ΓэB/c²,

в котором ясно виден пик от ф(1020).

Приведено также ожидаемое по моделированию

являются процессы e+e- \rightarrow K*K \rightarrow K⁺K⁻ π^0 и e+e- \rightarrow K⁺K⁻ γ .

распределение фона. Доминирующими источниками фона

Видно, что моделирование хорошо воспроизводит как полное число фоновых событий, так и форму фонового распределения.

В распределении по M_{rec} выделялись две области: сигнальная 1.00 < M_{rec} < 1.04 GeV/c² и фоновая 1.04 < M_{rec} < 1.08 GeV/c² Число событий процесса $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ вычислялось следующим образом:

N = (N1 - kb*N2) / (1-ks*kb),

где N1 и N2 --- числа событий в сигнальной и фоновой областях в экспериментальных данных, kb --- отношение N1/N2 для фона, ks - отношение N2/N1 для сигнала. Коэффициенты kb и ks определялись по моделированию.

Для получения Борновского сечения необходимо ввести радиационные поправки. Для их вычисления проводилась совместная аппроксимация данных СНД и данных двух измерений BABAR.

Борновское сечение описывалось когерентной суммой вкладов резонансов ρ(1450) и ρ(1700) (модель 1). В этой модели массы и ширины резонансов фиксировались на табличных значениях (PDG), а сечения в максимуме резонансов и относительная фаза между их амплитудами были свободными параметрами. Полученное Борновское сечение процесса е+е- → φπ⁰ приведено в таблице и показано на рис. вместе с измерениями BABAR и аппроксимирующей кривой. В целом качество аппроксимации является неудовлетворительным (χ2/ ndf=50/28).

\sqrt{s} (GeV)	σ (nb)	$\sqrt{s} \; (\text{GeV})$	σ (nb)	$\sqrt{s}(\text{GeV})$	σ (nb)
1.40 - 1.50	$0.067^{+0.131}_{-0.041}$	1.65 - 1.70	$0.076^{+0.048}_{-0.031}$	1.85 - 1.90	$0.048^{+0.031}_{-0.018}$
1.50 - 1.55	$0.023^{+0.094}_{-0.020}$	1.70 - 1.75	$0.047\substack{+0.043\\-0.027}$	1.90 - 1.95	$0.049^{+0.025}_{-0.016}$
1.55 - 1.60	$0.294_{-0.081}^{+0.110}$	1.75 - 1.80	$0.101\substack{+0.041\\-0.028}$	1.95 - 2.10	$0.048^{+0.033}_{-0.018}$
1.60 - 1.65	$0.035\substack{+0.050\\-0.024}$	1.80 - 1.85	$0.086^{+0.049}_{-0.029}$		

Лучшее описание данных дает модель с двумя резонансами, в которой масса и ширина одного из них фиксировалась на табличных значениях для ρ(1700), а параметры второго были свободными (модель 2). В результате аппроксимации были получены следующие масса и ширина для этого резонанса: 1585 ± 15 МэВ и 75 ± 30 МэВ. Для этой модели χ2/ndf=38/26 (Р(χ 2)=6%). Аппроксимирующая кривая для модели 2 также показана на рис. Следует отметить, что векторный резонанс с такими параметрами в таблице свойств частиц (PDG) отсутствует.

Разница в радиационных поправках между моделями 1 и 2 использовалась для оценки модельной ошибки Борновского сечения. Она составляет 14% для интервала 1.6 -1.65 ГэВ, 8% - для интервала 1.65-1.7 ГэВ, и не превышает 6% для остальных точек. Систематическая погрешность в измерении сечения определяется также как для сечения е⁺е⁻ → K⁺K⁻π⁰ и оценивается в 10%.

Заключение

В данной работе представлены результаты изучения процесса $e^+e^- \rightarrow K^+K^-\pi^0$

в диапазоне энергий от 1.28 до 2 ГэВ в системе центра масс.

Анализировались данные с интегральной

светимостью 26.4 пб⁻¹, накопленные в эксперименте с детектором СНД на

е+е- коллайдере ВЭПП-2000 в 2010, 2011 гг.

В работе показано, что в исследуемом диапазоне энергий процесс е⁺е[−] → K⁺K[−]π⁰ идет

в основном через промежуточное состояние К*(892)[±]К⁻⁺. Имеется

также сигнал от промежуточного состояния фπ⁰.

Отдельно измерены сечения процессов $e^+e^- \rightarrow K^+K^-\pi^0$ (без $\phi\pi^0$) и $e^+e^- \rightarrow \phi\pi^0$.

Измеренные сечения неплохо согласуются с предыдущими

измерениями в эксперименте BABAR и имеют сравнимую точность.

Спасибо за внимание.

Для получения Борновского сечения необходимо ввести радиационные поправки. Для их вычисления проводилась совместная аппроксимация данных СНД и данных двух измерений BABAR.

Борновское сечение описывалось когерентной суммой вкладов резонансов р(1450) и р(1700) (модель 1). В этой модели массы и ширины резонансов фиксировались на табличных значениях (PDG), а сечения в максимуме резонансов и относительная фаза между их амплитудами были свободными параметрами. Полученное Борновское сечение процесса e+e- → $\phi\pi^0$ приведено в таблице и показано на рис. вместе с измерениями BABAR и аппроксимирующей кривой. Видно, что все три измерения неплохо согласуются с друг другом ниже 1.75 ГэВ. В диапазоне 1.75--2 ГэВ имеется не статистический разброс измерений. Аппроксимирующая кривая описывает поведение сечения, наблюдаемое в эксперименте, везде кроме узкого интервала вблизи √s=1.58 ГэВ, где превышение над кривой наблюдается во всех трех измерениях. В целом качество аппроксимации является неудовлетворительным (χ2/ ndf=50/28). Процесс $e^{\scriptscriptstyle +}\,e^{\scriptscriptstyle -} \rightarrow \, \varphi \pi^0 \, \rightarrow \, K^{\scriptscriptstyle +} \,\, K^{\scriptscriptstyle -} \,\, \pi^0$

Разница в радиационных поправках между моделями 1 и 2 использовалась для оценки модельной ошибки борновского сечения. Она составляет 14% для интервала 1.6 -1.65 ГэВ, 8% - для интервала 1.65-1.7 ГэВ, и не превышает 6% для остальных точек. Систематическая погрешность в измерении сечения определяется также как для сечения е⁺е⁻ → K⁺K⁻π⁰и оценивается в 10%.