Weak mixing angle measurement at SCT

Vitaly Vorobyev (BINP)

arXiv:1912.09760 [hep-ph] (accepted by JHEP)

Novosibirsk, March 12th, 2020

The weak mixing angle

• Electroweak model $SU(2)_L \times U(1)_Y$ (Glashow, 1961) $A_\mu = B^0_\mu \cos \theta_W + W^0_\mu \sin \theta_W$ $Z_\mu = W^0_\mu \cos \theta_W - B^0_\mu \sin \theta_W$ Two independent coupling constants g and g'

• On-shell definition of the weak mixing angle g'^2 m_W^2

$$\sin^2 \theta_W \equiv \frac{g}{g^2 + g'^2} = 1 - \frac{m_W}{m_Z^2}$$

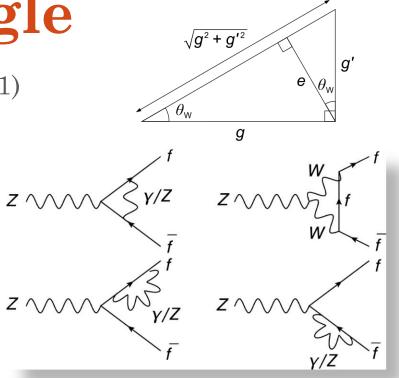
• Weak neutral current

$$\frac{g}{\cos\theta_W} Z_\mu \bar{f} \gamma^\mu \left(I_3^f - 2Q_f \sin^2\theta_W - I_3^f \gamma_5 \right) f, \qquad I_3^f = 0, \pm 1/2$$

• Effective value due to radiative corrections

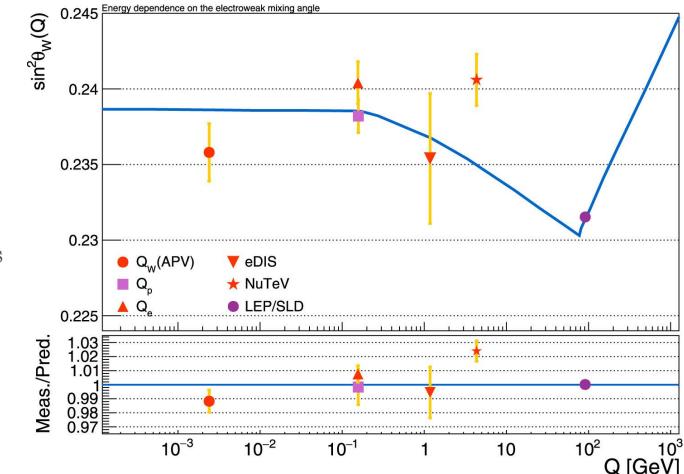
$$\sin^2 \theta_{\rm eff}^f \equiv \kappa_Z^f \sin^2 \theta_W$$

Full two-loop EW fermionic and bosonic corrections completed recently



$\sin^2 \theta_{\rm eff}$ measurements

- A_{FB} close to the Z pole
 - $\delta(\sin^2 \theta_{\rm eff}) \approx 0.1\%$
 - $Q = m_Z = 91 \text{ GeV}$
- Atomic parity violation
 - $\delta(\sin^2 \theta_{\rm eff}) \approx 0.4\%$
 - $Q \sim 10^{-3} \, {\rm GeV}$
- ν and polarized e⁻ scattering on fixed targets
 - $\delta(\sin^2\theta_{\rm eff}) \approx 5\%$
 - *Q* ~ 1 GeV
- Planned experiments
 - P2 at MESA (Mainz)
 - Moller at JLab



$\sin^2 \theta_{\rm eff}$ at colliders

- 1. LEP
 - Unpolarized e^+e^- beams near Z pole, $17\times 10^6~{\rm Zs}$
 - Forward-backward asymmetry
- 2. SLAC Large Detector (SLD)
 - Polarized e^+e^- beams near Z pole, $50\times 10^3~{\rm Zs}$
 - Average beam polarization of 60%
 - Combinations of the forward-backward and left-right asymmetries
- **3**. LHC: ATLAS, CMS, LHCb
 - Unpolarized proton beams
 - Tests of the $Z \rightarrow l\bar{l}$ couplings and measurement of $\sin^2 \theta_{eff}^l$
 - Model-dependent

Left-right asymmetry at J/ψ

polarization

• Interference of γ^* and Z^* annihilation

$$A_{LR} = \frac{3/8 - \sin^2 \theta_{\text{eff}}^c}{2\sin^2 \theta_{\text{eff}}^c \left(1 - \sin^2 \theta_{\text{eff}}^c\right)} \left(\frac{m_{J/\psi}}{m_Z}\right)^2 \xi \approx 4.7 \times 10^{-4} \xi$$

the average e^{-1}

- The expected statistical precision at SCT
 - Luminosity $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - Cross-section $\sigma(e^+e^- \rightarrow J/\psi) \approx 10^{-30} \text{ cm}^2$
 - One data-taking season $t = 10^7$ s
 - Fraction of J/ψ decays employed for the analysis $\varepsilon \approx 0.5$

$$A_{LR} \equiv \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}, \qquad \frac{\sigma(A_{LR})}{A_{LR}} \approx \frac{1}{A_{LR}\sqrt{L\sigma t\varepsilon}} \approx 5 \times 10^{-3}$$

СЛАБЫЕ НЕЙТРАЛЬНЫЕ ТОКИ НОВЫХ КВАРКОВ В *е⁺е⁻*-АННИГИЛЯЦИИ

Ю. И. СКОВПЕНЬ, И. Б. ХРИПЛОВИЧ

ИНСТИТУТ Я ДЕРНОЙ ФИЗИКИ СО АН СССР (Поступило в редакцию 11 апреля 1979 г.)

и при полной продольной поляризации обеих или хотя бы одной из начальных частиц находим для qq-резонанса

$$\eta(1,-1) = \eta(1,0) = \eta(0,-1) = \frac{\sqrt{2}Gm^2}{8\pi\alpha|Q|} (1-4|Q|\sin^2\theta).$$
(6)

При sin² θ=1/4¹) эта величина составляет соответственно для ψ- и Υ-пиков

$$\eta_{\Psi} = \frac{\sqrt{2} G m^2}{16\pi\alpha} \approx 4.10^{-4}, \ \eta_{\Gamma} = \frac{\sqrt{2} G m^2}{4\pi\alpha} \approx 1.6 \cdot 10^{-2}.$$
(7)

$$\frac{\sin^{2}(\theta_{\text{eff}}^{c}) \text{ at } J/\psi}{\frac{\sigma(\sin^{2}\theta_{\text{eff}}^{c})}{\sin^{2}\theta_{\text{eff}}^{c}} \approx -0.44 \frac{dA_{LR}}{A_{LR}} \oplus 0.44 \frac{d\xi}{\xi} \approx$$

- The ultimate one-year absolute precision for $\sin^2\theta^c_{\rm eff}$ at SCT is 5×10^{-4}
 - The average electron beam polarization ξ should be controlled with precision of 10^{-3}

0.3%

- Polarization monitoring
 - On-line laser diagnostics
 - Off-line data-driven approach (this talk)
- Luminosity monitoring
- Careful experiment design to minimize systematic uncertainty

$e^+e^- \to J/\psi \to [\Lambda \to p\pi^-][\overline{\Lambda} \to \overline{p}\pi^+]$

• Leptonic current (z axis along Λ momentum)

$$j_e^{\mu} \equiv \bar{v}_{-\xi} \gamma^{\mu} u_{\xi} = \sqrt{s} (0, \xi \cos \theta, i, -\xi \sin \theta)$$

• The $J/\psi \to \Lambda \overline{\Lambda}$ vertex

$$-ie_{g}\bar{u}_{\Lambda}(p_{1})\left[G_{M}^{\psi}\gamma^{\mu}-\frac{2m_{\Lambda}}{Q^{2}}\left(G_{M}^{\psi}-G_{E}^{\psi}\right)Q^{\mu}\right]v_{\overline{\Lambda}}(p_{2}),$$

$$Q \equiv p_{1}-p_{2}$$

$$e^{-(k_{-})} \qquad p(l_{1}) \\ \gamma(P) \qquad \Lambda(p_{1}) \qquad \pi^{-}(q_{1}) \\ \overline{\Lambda}(p_{2}) \qquad \pi^{+}(q_{2}) \\ \overline{p}(l_{2}) \\ p(l_{2}) \\ \overline{p}(l_{2}) \\$$

- The $\Lambda \to p\pi^- (\overline{\Lambda} \to \overline{p}\pi^+)$ vertex $\overline{u}_p[A + B\gamma^5]u_{\Lambda}, \quad (\overline{v}_{\overline{\Lambda}}[A' + B'\gamma^5]v_{\overline{p}}), \qquad |A| \sim |B|$
- Four real form-factors

$$\alpha \equiv \frac{s \left| G_{\rm M}^{\psi} \right|^2 - 4m_{\Lambda}^2 \left| G_{\rm E}^{\psi} \right|^2}{s \left| G_{\rm M}^{\psi} \right|^2 + 4m_{\Lambda}^2 \left| G_{\rm E}^{\psi} \right|^2}, \qquad \Delta \Phi \equiv \arg \left(\frac{G_{\rm E}^{\psi}}{G_{\rm M}^{\psi}} \right), \qquad \alpha_1, \alpha_2 \quad \longleftarrow \begin{array}{c} \Lambda \text{ and } \overline{\Lambda} \text{ decay} \\ \text{form-factors. CP} \\ \text{conservation} \\ \text{implies } \alpha_1 = -\alpha_2 \end{array}$$

Leptonic and hadronic tensors

• Leptonic tensor

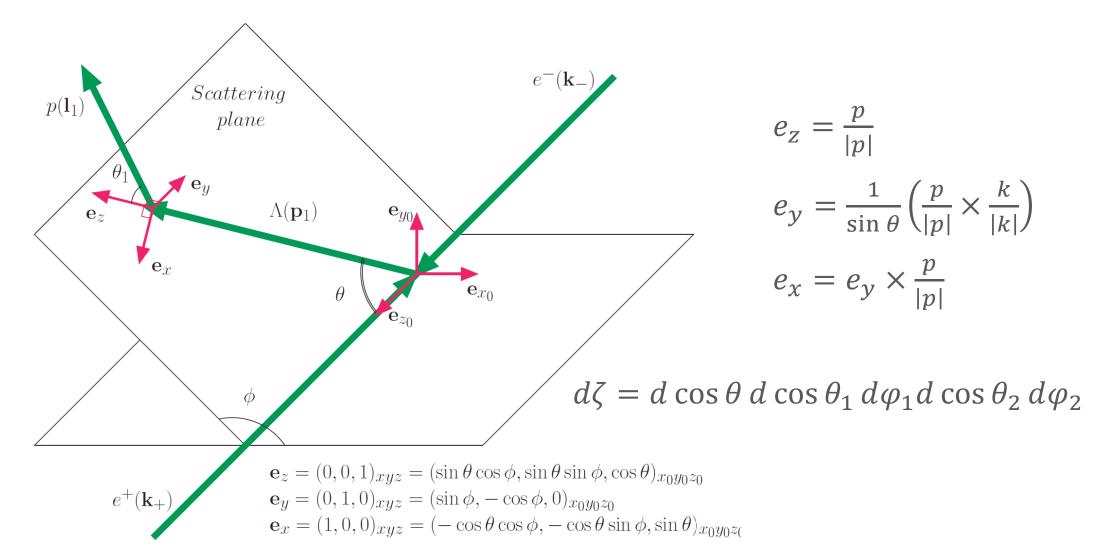
$$L^{\mu\nu} \equiv (j_e^{\nu})^{\dagger} j_e^{\mu} = k_+^{\mu} k_-^{\nu} + k_-^{\mu} k_+^{\nu} - \frac{s}{2} g^{\mu\nu} - \xi i \varepsilon^{\mu\nu\alpha\beta} k_{-\alpha} k_{+\beta}$$

• Hadronic tensor: separate symmetric and anti-symmetric parts

$$H_{\nu\mu} \equiv \widetilde{H}_{\nu\mu} + \overline{H}_{\nu\mu}, \qquad \widetilde{H}_{\nu\mu} \equiv \frac{H_{\nu\mu} + H_{\mu\nu}}{2}, \qquad \overline{H}_{\nu\mu} \equiv \frac{H_{\nu\mu} - H_{\mu\nu}}{2}$$

- Differential cross-section (5D) $d\sigma \propto W(\zeta)d\cos\theta \, d\Omega_1 d\Omega_2, \qquad W(\zeta) \propto L^{\mu\nu}H_{\nu\mu} = a + \xi b$
- Symmetric part calculated in G. Fäldt, Eur. Phys. J. A 51 (2015) 74

Combined reference frame



Angular distribution

$$W(\zeta) = a + \xi b$$

$$a = F_0 + \alpha F_5 + \alpha_1 \alpha_2 \left(F_1 + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) F_2 + \alpha F_6 \right) + \sqrt{1 - \alpha^2} \sin(\Delta \Phi) \left(a_1 F_3 + \alpha_2 F_4 \right)$$

$$b = (1 + \alpha) (\alpha_1 G_1 + \alpha_2 G_2) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \left(\alpha_1 G_3 + \alpha_2 G_4 \right) + \sqrt{1 - \alpha^2} \alpha_1 \alpha_2 \sin(\Delta \Phi) G_5$$

 $\mathcal{F}_0 = 1,$

- $\begin{aligned} \mathcal{F}_1 &= \sin^2 \theta \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 + \cos^2 \theta \cos \theta_1 \cos \theta_2, \\ \mathcal{F}_2 &= \sin \theta \cos \theta \left(\sin \theta_1 \cos \theta_2 \cos \phi_1 + \cos \theta_1 \sin \theta_2 \cos \phi_2 \right), \\ \mathcal{F}_3 &= \sin \theta \cos \theta \sin \theta_1 \sin \phi_1, \\ \mathcal{F}_4 &= \sin \theta \cos \theta \sin \theta_2 \sin \phi_2, \\ \mathcal{F}_5 &= \cos^2 \theta, \\ \mathcal{F}_6 &= \cos \theta_1 \cos \theta_2 \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2, \end{aligned}$
- $\begin{aligned} \mathcal{G}_1 &= \cos\theta\cos\theta_1, \\ \mathcal{G}_2 &= \cos\theta\cos\theta_2, \\ \mathcal{G}_3 &= \sin\theta\sin\theta_1\cos\phi_1, \\ \mathcal{G}_4 &= \sin\theta\sin\theta_2\cos\phi_2, \\ \mathcal{G}_5 &= \sin\theta\left(\sin\theta_1\cos\theta_2\sin\phi_1 + \cos\theta_1\sin\theta_2\sin\phi_2\right). \end{aligned}$

New!

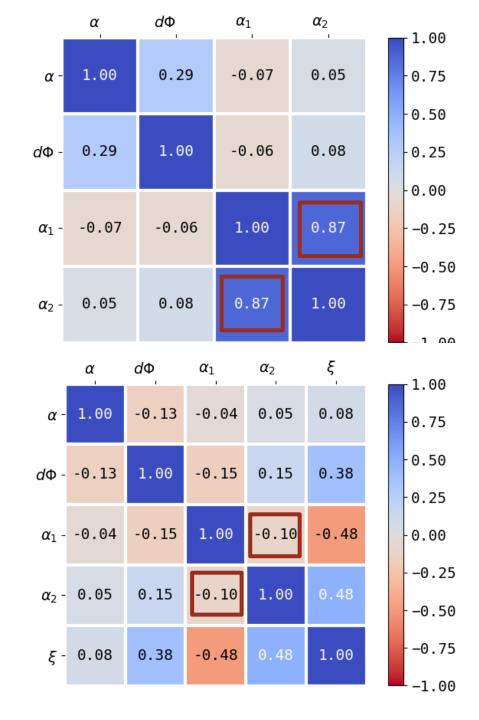
Feasibility study: 5D Fit

Setup	SCT one-year σ (10 ⁻⁴)					
	ξ	α	$\Delta \Phi$ (rad)	α_i		
$\xi = 0$	Fixed	1.5	3.1	2.8		
$\xi = 0.8$	1.3	1.2	1.6	0.9		

- The expected one-year signal yield at SCT $N_{\rm sig} = 0.8 \times 10^9 \varepsilon_{\rm det}$
- ξ_+ and ξ_- are independent fit parameters
- Sensitivity to the *CP*-violating combination $\alpha_1 + \alpha_2$ is increased dramatically due to the beam polarization
 - SM expectation

$$A_{\Lambda} \equiv \left| \frac{\alpha_1 + \alpha_2}{\alpha_1 - \alpha_2} \right| \lesssim 5 \times 10^{-5}$$

Expected precision: $\sigma(A_{\Lambda}) = 1.2 \times 10^{-4}$



Single-side observables

• 3D single-side angular distribution

$$\frac{d\sigma}{d\cos\theta \ d\Omega_1} \propto a + \xi b$$
$$a = 1 + \alpha \cos^2\theta + \alpha_1 \sqrt{1 - \alpha^2} \sin \Delta \Phi \sin \theta \cos \theta \sin \theta_1 \sin \phi_1$$

 $b = (1 + \alpha)\alpha_1 \cos\theta \cos\theta_1 + \alpha_1\sqrt{1 - \alpha^2} \cos\Delta\Phi \sin\theta \sin\theta_1 \cos\phi_1$

• The form factors and average beam polarization can be measured using single-side reconstructed events

Sature	SCT one-year σ (10 ⁻⁴)					
Setup	ξ	α	$\Delta \Phi$ (rad)	$lpha_i$		
5D $\xi = 0$	Fixed	1.5	3.1	2.8		
$5D \xi = 0.8$	1.3	1.2	1.6	0.9		
$3D \xi = 0.8$	4.3	1.2	2.4	3.4		

1D Distributions

- Proton azimuth angle ϕ_1 in Λ frame

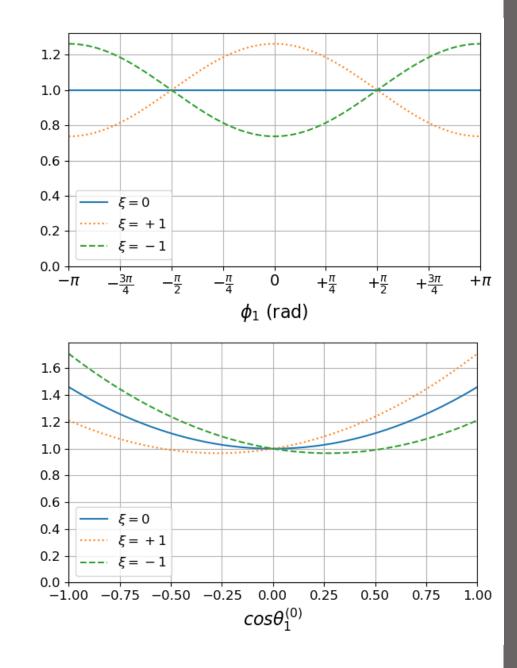
$$\frac{d\sigma}{d\phi_1} \propto 1 + \frac{\alpha}{3} + \xi \frac{\pi^2}{16} \alpha_1 \sqrt{1 - \alpha^2} \cos \Delta \Phi \cos \phi_1$$

• Corresponding integral asymmetry

$$A_{\rm LR} = \xi \frac{3\pi}{8} \frac{\sqrt{1-\alpha^2}}{\alpha+3} \alpha_1 \cos \Delta \Phi \approx 0.17\xi$$

• Proton polar angle in the lab frame

$$\frac{d\sigma}{d\cos\theta_1^{(0)}} \propto 1 + \alpha\cos^2\theta_1^{(0)} + \xi\alpha_1\cos\theta_1^{(0)} [0.203(1+\alpha)] + 0.054\sqrt{1-\alpha^2}\cos\Delta\Phi + \mathcal{O}(10^{-2})]$$
• Integral asymmetry $A_{\text{FB}}^{(0)} \approx 0.11\xi$ can be improved



Feasibility study: summary

1. The process $e^+e^- \to J/\psi \to [\Lambda \to p\pi^-][\overline{\Lambda} \to \overline{p}\pi^+]$ can be used to control the average beam polarization precisely enough for measurement of the $\sin^2 \theta_{eff}^c$

 $\sigma_{\rm stat}(\xi) \sim 10^{-4}$

Systematic uncertainty is to be considered

- 2. Longitudinal polarization of electron beam
 - improves Λ baryon formfactors measurement accuracy
 - improves sensitivity to the *CP* symmetry breaking in Λ decays
 - enriches physics of charmed baryons at SCT (this item is to be further developed)

Subtleties and difficulties

- 1. Luminosity monitoring
- 2. Effect of the detector magnetic field
- **3**. Effect of the bunch magnetic field
- 4. Effect of (non-zero) bunch crossing angle
- 5. Not equal average positive and negative beam polarization $\xi_+ \neq -\xi_-$
- 6. Accounting the $e^+e^- \to Z \to J/\psi \to \Lambda \overline{\Lambda}$ amplitude contribution
- 7. Effect of natural polarization of positrons
- 8. ...

Conclusions

- 1. SCT with polarized electron beam is a unique experiment to study neutral weak coupling of charm quark and to measure $\sin^2 \theta_{eff}^c$
- 2. Luminosity control at the 10⁻⁶ precision level requires dedicated low-angle Bhabha events detector
- 3. The decay $J/\psi \to \Lambda \overline{\Lambda}$ can be used as a precise monitor of the average beam polarization ξ
- 4. Baryon physics at SCT with polarized electrons seems attractive and needs to be considered in detail
- 5. Reaching new precision frontiers will require consideration of new subtle effects

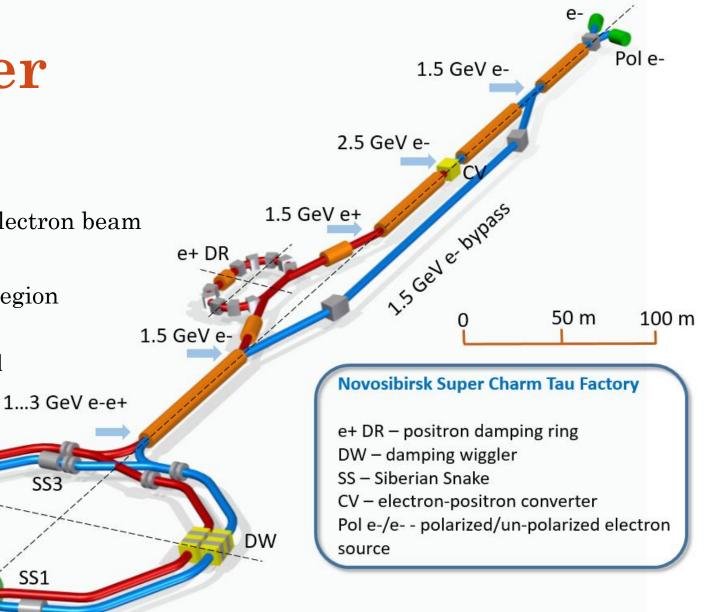
Backup

SCT collider

- Beam energy: from 1 to 3 GeV
- > $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{s}^{-1} @ 2 \text{ GeV}$
- Longitudinal polarization of the electron beam
- Crab-waist collisions
 - $\circ~$ Beam size in the interaction region 20 $\mu m \times 0.2 \ \mu m \times 10 \ mm$

DW

• Beams crossing angle 60 mrad



A_{FB} at LEP

- Annihilation process $e^+e^- \rightarrow Z \rightarrow f\bar{f}$, unpolarized cross-section

 $\frac{d\sigma}{d\cos\theta} \propto A(1+\cos^2\theta) + B\cos\theta$

• Forward-backward asymmetry

$$A_{FB}^{f} \equiv \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4} A_{e} A_{f},$$

$$A_{f} \equiv \frac{2g_{v}^{f} g_{a}^{f}}{\left(g_{a}^{f}\right)^{2} + \left(g_{v}^{f}\right)^{2}} = \frac{1 - 4|Q_{f}| \sin^{2} \theta_{eff}^{f}}{1 - 4|Q_{f}| \sin^{2} \theta_{eff}^{f} + 8|Q_{f}| \sin^{4} \theta_{eff}^{f}}$$

• Counting experiment

SLC Experiment

• Polarized beam gives access to the left-right asymmetry

$$A_{LR} \equiv \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = A_e \xi$$

 $\boldsymbol{\xi}$ is the average polarization of the electron beam

• Forward-backward asymmetry with polarized beam

$$A_{FB}^f = \frac{3}{4}A_f \frac{A_e + \xi}{1 + A_e\xi}$$

• Left-right forward-backward cross-section ratio

$$A_f = \frac{4}{3} \frac{\sigma_{LF}^f + \sigma_{RB}^f - \sigma_{LB}^f - \sigma_{RF}^f}{\sigma_{LF}^f + \sigma_{RB}^f + \sigma_{LB}^f + \sigma_{RF}^f}$$

Counting experiment with direct measurement of A_f

BESIII analysis

- $1.31 \times 10^9 J/\psi$ events
- $J/\psi \rightarrow [\Lambda \rightarrow p\pi^{-}][\overline{\Lambda} \rightarrow \overline{p}\pi^{+}]$ signal yield 0.42×10^{6} (with 400 background events)
- The results

$$\begin{split} \Delta \Phi &= (42.4 \pm 0.6 \pm 0.5)^{\circ} \\ \alpha &= 0.461 \pm 0.006 \pm 0.007 \\ \alpha_1 &= +0.750 \pm 0.009 \pm 0.004 \\ \alpha_2 &= -0.758 \pm 0.010 \pm 0.007 \end{split}$$

nature > nature physics > letters > article nature physics

Letter | Published: 06 May 2019

Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation

The BESIII Collaboration

 Nature Physics 15, 631–634 (2019)
 Download Citation ±

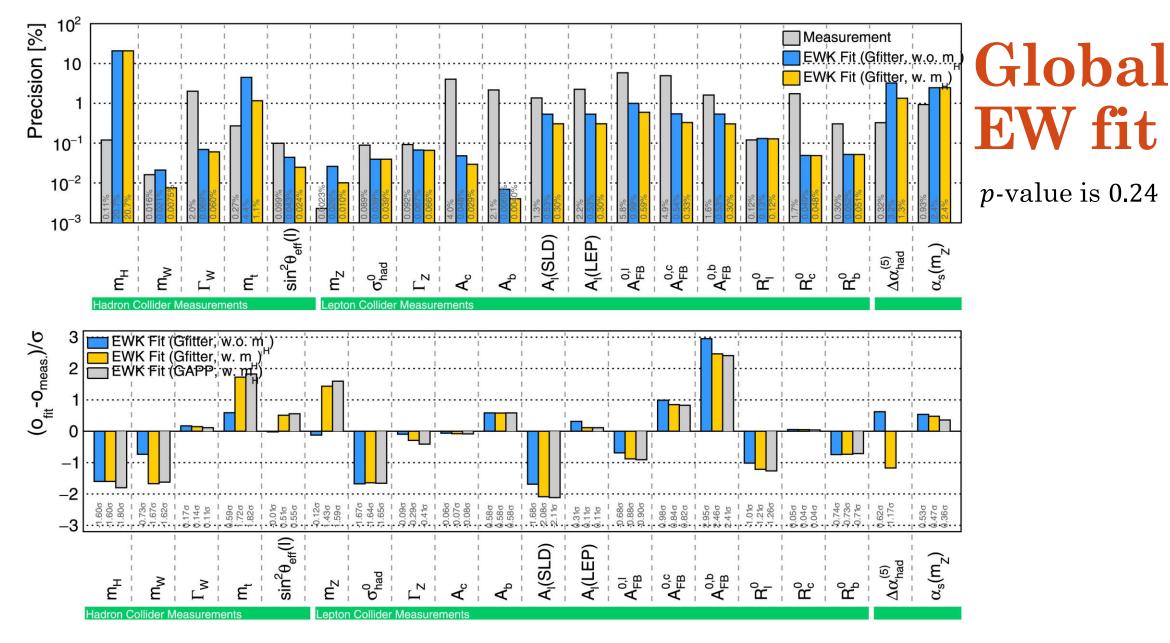
 3334 Accesses
 8 Citations
 45 Altmetric
 Metrics ≫

Table 3.8

Overview of the measured asymmetries at the Z pole from the LEP and SLD experiments [19]. The values are compared to the SM prediction and a pull value for each observable, $(\mathcal{O}_{\text{measured}} - \mathcal{O}_{\text{predicted}})/\Delta\mathcal{O}$, is calculated. In addition, the corresponding effective weak mixing angle $\sin^2 \theta_{\text{eff}}^l$ is given. The values indicated with an asterisk have been derived within this work.

Observable	Collider	Value	Total unc.	SM expectation	Pull	Corresponding $\sin^2 \theta_{\text{eff}}^l$
A _e	LEP	0.1498	0.0049	0.1473 ± 0.0012	0.5	$0.23117 \pm 0.00062^*$
A_{τ}	LEP	0.1439	0.0043	0.1473 ± 0.0012	-0.8	0.23192 ± 0.00055
$A_{\rm FB}^{0,e}$	LEP	0.0145	0.0025	0.01627 ± 0.00027	-0.7	$0.23254 \pm 0.0015^{*}$
$A_{\rm FB}^{0,\mu}$	LEP	0.0169	0.0013	0.01627 ± 0.00027	0.5	$0.23113 \pm 0.0007^*$
$A_{\rm FB}^{0,\tau}$	LEP	0.0188	0.0017	0.01627 ± 0.00027	1.5	$0.23000 \pm 0.0009^{*}$
$A_{\rm FB}^{0,l}$	LEP	0.0171	0.001	0.01627 ± 0.00027	0.8	0.23099 ± 0.00053
$A_{\rm FB}^{0,c}$	LEP	0.0699	0.0036	0.07378 ± 0.00068	-1.1	0.23220 ± 0.00081
$A_{FB}^{0,e} \\ A_{FB}^{0,\mu} \\ A_{FB}^{0,\tau} \\ A_{FB}^{0,l} \\ A_{FB}^{0,c} \\ A_{FB}^{0,c} \\ A_{FB}^{0,b} \\ A_{FB}^{0,b}$	LEP	0.0992	0.0017	0.10324 ± 0.00088	-2.4	0.23221 ± 0.00029
A _e	SLD	0.1516	0.0021	0.1473 ± 0.0012	2.0	$0.23094 \pm 0.00027^*$
A_{μ}	SLD	0.142	0.015	0.1473 ± 0.0012	-0.4	$0.23216 \pm 0.002^{*}$
A_{τ}	SLD	0.136	0.015	0.1473 ± 0.0012	-0.8	$0.23259 \pm 0.002^{*}$
A_l	SLD	0.1513	0.0021	0.1473 ± 0.0012	1.9	0.23098 ± 0.00026
Ac	SLD	0.67	0.027	0.66798 ± 0.00055	0.1	$0.231 \pm 0.008^{*}$
A _b	SLD	0.923	0.02	0.93462 ± 0.00018	-0.6	$0.25 \pm 0.03^{*}$

https://doi.org/10.1016/j.ppnp.2019.02.007



https://doi.org/10.1016/j.ppnp.2019.02.007

23

Experiment at SCT

- 1. Set beam energy at $\sqrt{s} \approx m(J/\psi)$, about 400 bunches circulate simultaneously
- 2. Set *random* polarization 0, ξ_+ or ξ_- , $\xi_+ \approx -\xi_-$, for each e^- bunch
- 3. Count numbers of $J/\psi \rightarrow$ hadrons events N_+ and N_- for the positive and negative polarizations ξ_+ and ξ_-

 $N_{\pm} \sim 10^{12}$, event rate ≈ 100 kHz

4. Calculate the cross sections and left-right asymmetry

$$\sigma_{\pm} = \frac{N_{\pm}}{\mathcal{L}_{\pm}\varepsilon_{\text{det}}}, \qquad A_{LR} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

- Luminosity monitoring and backgrounds
 - Statistical precision $\sigma_{\mathcal{L}}/\mathcal{L} \sim 10^{-6}$ is needed
 - Multiplicative bias $\mathcal{L}'_{\pm} = (1 + \kappa)\mathcal{L}_{\pm}$ vanishes
 - Additive bias δN should be controlled at the level of 10^{-3}

Table 3.9

Overview of selected measurements at LEP, SLD, Tevatron and the LHC of the effective leptonic electroweak mixing angle $\sin^2 \theta_{\text{eff}}^l$ using different observables including a breakdown of different sources of uncertainties. Values which are indicated with an asterisk have not been published and hence only estimated within this work.

$\sin^2 \theta_{\rm eff}^l$	Value	Stat. unc.	Syst. unc.	PDF unc.	Model unc.	Total unc.	Reference
DØ	0.23095	0.00035	0.00007	0.00019	0.00008	0.00047	[223]
CDF	0.23221	0.00043	0.00003	0.00016	0.00006	0.00046	[224]
Tevatron (combined)	0.23148	0.00027	0.00005	0.00018	0.00006	0.00033	[225]
CMS	0.23101	0.00036	0.00018	0.00030	0.00016	0.00053	[226]
ATLAS (central)	0.23119	0.00031	0.00018	0.00033	0.00006	0.00049	[227]
ATLAS (forward)	0.23166	0.00029	0.00021	0.00022	0.00010	0.00043	[227]
ATLAS (combined)	0.23140	0.00021	0.00014	0.00024	0.00007	0.00036	[227]
LHCb	0.23142	0.00073	0.00052	0.00043*	0.00036*	0.00106	[228]
A_{FB}^{had} (LEP)	0.23240	0.00070	0.00100	-	-	0.00120	[19]
A_l (LEP)	0.23099	0.00042*	0.00032*	-	-	0.00053	[19]
$A_{\tau} + A_{e}$ (LEP)	0.23159	0.00037*	0.00018*	-	-	0.00041	[19]
$A_{\rm FB}^b$ (LEP)	0.23221	0.00023*	0.00017*	_	_	0.00029	[19]
A_l (SLD)	0.23098	0.00024	0.00013	_	_	0.00026	[19]

https://doi.org/10.1016/j.ppnp.2019.02.007

Lambda decay form factor

• $\Lambda \rightarrow p\pi^-$ decay with Λ polarization $\boldsymbol{\omega}$ and π^- momentum \boldsymbol{q} : $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha_1 \boldsymbol{\omega} \cdot \boldsymbol{q}$

• $\overline{\Lambda} \rightarrow \overline{p}\pi^+$:

$$\frac{d\Gamma}{d\Omega} \propto 1 + \alpha_2 \boldsymbol{\omega} \cdot \boldsymbol{q}$$

• CP symmetry implies $\alpha_1 = -\alpha_2$. CP asymmetry

$$A_{\Lambda} \equiv \frac{\alpha_1 + \alpha_2}{\alpha_1 - \alpha_2}$$

is about 5×10^{-5} within the standard model

Feasibility study: the procedure

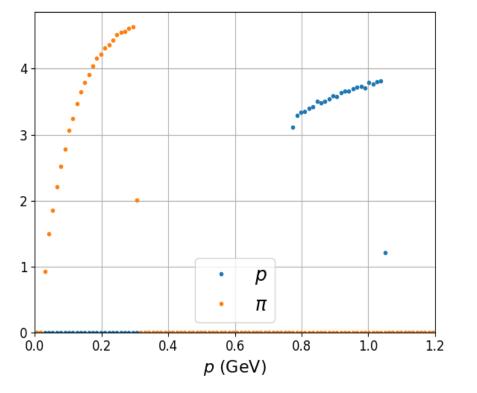
- 1. Generate phase-space distributed events with EvtGen
- 2. Accept-reject algorithm with probability proportional to $W(\zeta)$
- 3. Simple detection efficiency (min $p_t = 60 \text{ MeV}$, min $\theta = 10^\circ$), perfect momentum resolution and perfect identification
- 4. Maximum likelihood fit with likelihood function

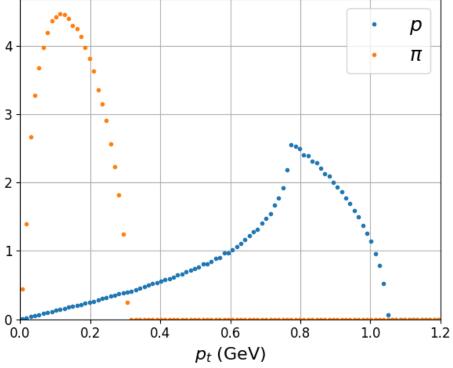
$$-2 \ln \mathcal{L} = -2 \sum_{i=1}^{N} \ln W(\zeta_i) + 2N \ln \sum_{j=1}^{M} \ln W(\tilde{\zeta}_j), \qquad M \gg N$$

Signal events PHSP normalization events

Signal yield and Detection efficiency

 $J/\psi \rightarrow [\Lambda \rightarrow p\pi^{-}][\overline{\Lambda} \rightarrow \overline{p}\pi^{+}]$





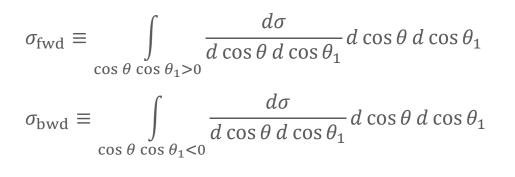
- $p_t > 60$ MeV and $\theta > 10^\circ$ give
 - Double-side detection efficiency $\varepsilon_{det} = 0.72$
 - Single-side detection efficiency $\varepsilon_{det}^{ss} = 0.84$
- $\mathcal{B}_1 \equiv \mathcal{B}(J/\psi \to \Lambda \overline{\Lambda}) = 1.9 \times 10^{-3}$
- $\mathcal{B}_2 \equiv \mathcal{B}(\Lambda \to p\pi^-) = 0.64$
- $N_{\rm sig}^0 = 10^{12} \times \mathcal{B}_1 \times \mathcal{B}_2^2 \approx 0.8 \times 10^9$

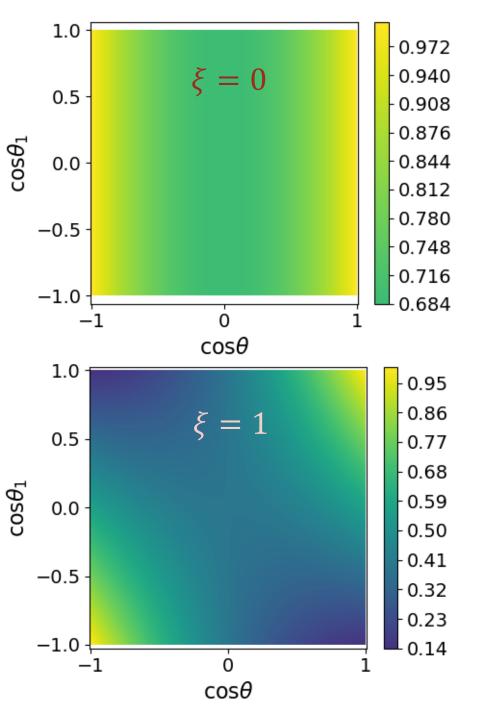
2D Distribution

 $\frac{d\sigma}{d\cos\theta\,d\cos\theta_1} \propto 1 + \alpha\cos^2\theta + \xi(1+\alpha)\alpha_1\cos\theta\cos\theta_1$

- Polarization makes $\cos \theta$ and $\cos \theta_1$ correlated
- Asymmetry can be formed

$$A_{\rm FB} \equiv \frac{\sigma_{\rm fwd} - \sigma_{\rm bwd}}{\sigma_{\rm fwd} + \sigma_{\rm bwd}} = \xi \frac{3\alpha_1}{4} \frac{\alpha + 1}{\alpha + 3} \approx 0.24\xi$$





Two-step procedure

- Data set composition:
 - $\frac{1}{3}N_0$ events with unpolarized beam
 - $\frac{1}{3}N_0$ events with $+\xi$
 - $\frac{1}{3}N_0$ events with $-\xi$
- **Step 1**: measure form factors with the unpolarized beam data
- Step 2: measure ξ with polarized beam data and externally constrained form factors

Setup	SCT one-year $\sigma(\xi)$ (10 ⁻⁴)				
$(\xi = 0.8)$	Nuisance FFs	Fixed FFs			
3D	1.6	1.2			
$2\mathrm{D}$	1.9	1.6			
1D azimuth	4.5	2.5			
1D polar lab					
A_{BF}		5.2			
A_{LR}		10			
$A_{BF}^{(0)}$		24			

Luminosity monitoring

$$\sigma_{\pm} = \frac{N_{\pm}}{\mathcal{L}_{\pm}\varepsilon_{\rm eff}}$$

- Statistical accuracy $\sigma_{\mathcal{L}}/\mathcal{L} \sim 10^{-6}$ is needed
 - Multiplicative systematic uncertainties vanish in asymmetry
- \mathcal{L} monitoring with Bhabha events

 $\sigma(e^+e^- \to e^+e^-)_{\theta > 10^\circ} \approx 1 \times 10^{-30} \text{ cm}^2 \approx \sigma(e^+e^- \to J/\psi)$

- Bhabha events statistics will limit precision
- $\ensuremath{\mathcal{L}}$ monitoring with dedicated device at low angle
 - Would provide good support for the $\sin^2 \theta_{\rm eff}$ measurement
 - The device should be able to measure bunch-by-bunch luminosity

Detector magnetic field

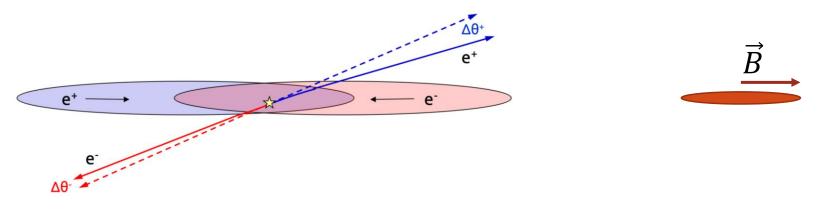
- $c\tau(\Lambda) = 7.90 \text{ mm}$
- Λ spin rotation in magnetic field

$$\omega = \frac{-2B\mu_{\Lambda}\mu_{N}}{\hbar}, \qquad \mu_{\Lambda} = -0.613$$

- A spin rotation in 1.5 T magnetic field is about 30 mrad
 - A $\sim 10^{-3}$ effect, probably should be considered
- Λ flight length-dependent correction
 - Requirements for the spatial and vertex resolution

Bunch magnetic field at SCT

- Bunch current 4.2 mA
- Beam size $0.178 \mu m \times 17.8 \mu m \times 10 mm$
- Magnetic field at bunch surface is about 0.01 T
- Correction for the effect of bunch magnetic field should be considered in the Bhabha-measured luminosity



G. Voutsinas et al., arXiv:1908.01698 [hep-ex]