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The weak mixing angle
• Electroweak model 𝑆𝑈 2 𝐿 × 𝑈 1 𝑌 (Glashow, 1961)

𝐴𝜇 = 𝐵𝜇
0 cos 𝜃𝑊 +𝑊𝜇

0 sin 𝜃𝑊
𝑍𝜇 = 𝑊𝜇

0 cos 𝜃𝑊 − 𝐵𝜇
0 sin 𝜃𝑊

Two independent coupling constants 𝑔 and 𝑔′

• On-shell definition of the weak mixing angle

sin2 𝜃𝑊 ≡
𝑔′

2

𝑔2 + 𝑔′2
= 1 −

𝑚𝑊
2

𝑚𝑍
2

• Weak neutral current
𝑔

cos 𝜃𝑊
𝑍𝜇 ҧ𝑓𝛾𝜇 𝐼3

𝑓
− 2𝑄𝑓 sin

2 𝜃𝑊 − 𝐼3
𝑓
𝛾5 𝑓, 𝐼3

𝑓
= 0,±1/2

• Effective value due to radiative corrections

sin2 𝜃eff
𝑓
≡ 𝜅𝑍

𝑓
sin2 𝜃𝑊

Full two-loop EW fermionic and bosonic corrections completed recently 2



𝐬𝐢𝐧𝟐 𝜽𝐞𝐟𝐟 measurements
• 𝐴𝐹𝐵 close to the 𝑍 pole

 𝛿 sin2 𝜃eff ≈ 0.1%

 𝑄 = 𝑚𝑍 = 91 GeV

• Atomic parity violation

 𝛿 sin2 𝜃eff ≈ 0.4%

 𝑄 ∼ 10−3 GeV

• 𝜈 and polarized 𝑒−

scattering on fixed targets

 𝛿 sin2 𝜃eff ≈ 5%

 𝑄 ∼ 1 GeV

• Planned experiments
 P2 at MESA (Mainz)

 Moller at JLab
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𝐬𝐢𝐧𝟐 𝜽𝐞𝐟𝐟 at colliders
1. LEP

 Unpolarized 𝑒+𝑒− beams near 𝑍 pole, 17 × 106 Zs

 Forward-backward asymmetry

2. SLAC Large Detector (SLD)

 Polarized 𝑒+𝑒− beams near 𝑍 pole, 50 × 103 Zs

 Average beam polarization of 60%

 Combinations of the forward-backward and left-right 
asymmetries

3. LHC: ATLAS, CMS, LHCb

 Unpolarized proton beams

 Tests of the 𝑍 → 𝑙 ҧ𝑙 couplings and measurement of sin2 𝜃eff
𝑙

 Model-dependent
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Left-right asymmetry at 𝑱/𝝍
• Interference of 𝛾∗ and 𝑍∗ annihilation

𝐴𝐿𝑅 =
3/8 − sin2 𝜃eff

𝑐

2 sin2 𝜃eff
𝑐 1 − sin2 𝜃eff

𝑐

𝑚𝐽/𝜓

𝑚𝑍

2

𝜉 ≈ 4.7 × 10−4𝜉

• The expected statistical precision at SCT

 Luminosity 𝐿 = 1035 cm−2s−1

 Cross-section 𝜎 𝑒+𝑒− → 𝐽/𝜓 ≈ 10−30 cm2

 One data-taking season 𝑡 = 107 s

 Fraction of 𝐽/𝜓 decays employed for the analysis 𝜀 ≈ 0.5

𝐴𝐿𝑅 ≡
𝜎+ − 𝜎−
𝜎+ + 𝜎−

,
𝜎 𝐴𝐿𝑅
𝐴𝐿𝑅

≈
1

𝐴𝐿𝑅 𝐿𝜎𝑡𝜀
≈ 5 × 10−3
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the average 𝑒−

polarization



𝐬𝐢𝐧𝟐 𝜽𝐞𝐟𝐟
𝒄 at 𝑱/𝝍
𝜎 sin2 𝜃eff

𝑐

sin2 𝜃eff
𝑐 ≈ −0.44

𝑑𝐴𝐿𝑅
𝐴𝐿𝑅

⊕0.44
𝑑𝜉

𝜉
≈ 0.3%

• The ultimate one-year absolute precision for sin2 𝜃eff
𝑐 at SCT is 

5 × 10−4

 The average electron beam polarization 𝜉 should be controlled with 
precision of 10−3

• Polarization monitoring

 On-line laser diagnostics

 Off-line data-driven approach (this talk)

• Luminosity monitoring

• Careful experiment design to minimize systematic uncertainty
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𝒆+𝒆− → 𝑱/𝝍 → 𝚲 → 𝒑𝝅− ഥ𝚲 → ഥ𝒑𝝅+

• Leptonic current (𝑧 axis along Λ momentum)

𝑗𝑒
𝜇
≡ ҧ𝑣−𝜉𝛾

𝜇𝑢𝜉 = 𝑠 0, 𝜉 cos 𝜃 , 𝑖, −𝜉 sin 𝜃

• The 𝐽/𝜓 → ΛഥΛ vertex

−𝑖𝑒𝑔 ത𝑢Λ 𝑝1 𝐺M
𝜓
𝛾𝜇 −

2𝑚Λ

𝑄2 𝐺M
𝜓
− 𝐺E

𝜓
𝑄𝜇 𝑣ഥΛ 𝑝2 ,

𝑄 ≡ 𝑝1 − 𝑝2

• The Λ → 𝑝𝜋− (ഥΛ → ҧ𝑝𝜋+) vertex

ത𝑢𝑝 𝐴 + 𝐵𝛾5 𝑢Λ, ҧ𝑣ഥΛ 𝐴′ + 𝐵′𝛾5 𝑣 ҧ𝑝 , 𝐴 ∼ 𝐵

• Four real form-factors

𝛼 ≡
𝑠 𝐺M

𝜓 2
− 4𝑚Λ

2 𝐺E
𝜓 2

𝑠 𝐺M
𝜓 2

+ 4𝑚Λ
2 𝐺E

𝜓 2 , ΔΦ ≡ arg
𝐺E
𝜓

𝐺M
𝜓

, 𝛼1, 𝛼2
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Λ and ഥΛ decay 

form-factors. CP 

conservation 

implies 𝛼1 = −𝛼2

𝛾 𝑃
Λ 𝑝1

ഥΛ 𝑝2

𝑒− 𝑘−

𝑒+ 𝑘+

𝑝 𝑙1

ҧ𝑝 𝑙2

𝜋− 𝑞1

𝜋+ 𝑞2



Leptonic and hadronic tensors
• Leptonic tensor

𝐿𝜇𝜈 ≡ 𝑗𝑒
𝜈 †𝑗𝑒

𝜇
= 𝑘+

𝜇
𝑘−
𝜈 + 𝑘−

𝜇𝑘+
𝜈 −

𝑠

2
𝑔𝜇𝜈 − 𝜉𝑖𝜀𝜇𝜈𝛼𝛽𝑘−𝛼𝑘+𝛽

• Hadronic tensor: separate symmetric and anti-symmetric parts

𝐻𝜈𝜇 ≡ ෩𝐻𝜈𝜇 + ഥ𝐻𝜈𝜇 , ෩𝐻𝜈𝜇 ≡
𝐻𝜈𝜇 + 𝐻𝜇𝜈

2
, ഥ𝐻𝜈𝜇 ≡

𝐻𝜈𝜇 − 𝐻𝜇𝜈

2

• Differential cross-section (5D)

𝑑𝜎 ∝ 𝑊 𝜁 𝑑 cos 𝜃 𝑑Ω1𝑑Ω2, 𝑊 𝜁 ∝ 𝐿𝜇𝜈𝐻𝜈𝜇 = 𝑎 + 𝜉𝑏

• Symmetric part calculated in G. Fäldt, Eur. Phys. J. A 51 (2015) 74
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Combined reference frame 

𝑒𝑧 =
𝑝

𝑝

𝑒𝑦 =
1

sin 𝜃

𝑝

𝑝
×

𝑘

𝑘

𝑒𝑥 = 𝑒𝑦 ×
𝑝

𝑝
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𝑑𝜁 = 𝑑 cos 𝜃 𝑑 cos 𝜃1 𝑑𝜑1𝑑 cos 𝜃2 𝑑𝜑2



Angular distribution
𝑊 𝜁 = 𝑎 + 𝜉𝑏

𝑎 = 𝐹0 + 𝛼𝐹5 + 𝛼1𝛼2 𝐹1 + 1 − 𝛼2 cos ΔΦ 𝐹2 + 𝛼𝐹6 + 1 − 𝛼2 sin ΔΦ 𝑎1𝐹3 + 𝛼2𝐹4

𝑏 = 1 + 𝛼 𝛼1𝐺1 + 𝛼2𝐺2 + 1 − 𝛼2 cos ΔΦ 𝛼1𝐺3 + 𝛼2𝐺4 + 1 − 𝛼2𝛼1𝛼2 sin ΔΦ 𝐺5
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New!



Feasibility study: 
5D Fit

Setup
SCT one−year 𝝈 (𝟏𝟎−𝟒)

𝜉 𝛼 ΔΦ (rad) 𝛼𝑖

𝜉 = 0 Fixed 1.5 3.1 2.8

𝜉 = 0.8 1.3 1.2 1.6 0.9
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• The expected one-year signal yield at SCT
𝑁sig = 0.8 × 109𝜀det

• 𝜉+ and 𝜉− are independent fit parameters

• Sensitivity to the 𝐶𝑃-violating combination 
𝛼1 + 𝛼2 is increased dramatically due to the 
beam polarization

 SM expectation

𝐴Λ ≡
𝛼1 + 𝛼2
𝛼1 − 𝛼2

≲ 5 × 10−5

Expected precision: 𝜎 𝐴Λ = 1.2 × 10−4



Single-side observables
• 3D single-side angular distribution

𝑑𝜎

𝑑 cos 𝜃 𝑑Ω1
∝ 𝑎 + 𝜉𝑏

𝑎 = 1 + 𝛼 cos2 𝜃 + 𝛼1 1 − 𝛼2 sin ΔΦ sin 𝜃 cos 𝜃 sin 𝜃1 sin𝜙1

𝑏 = 1 + 𝛼 𝛼1 cos 𝜃 cos 𝜃1 + 𝛼1 1 − 𝛼2 cos ΔΦ sin 𝜃 sin 𝜃1 cos𝜙1
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Setup
SCT one-year 𝝈 (𝟏𝟎−𝟒)

𝜉 𝛼 ΔΦ (rad) 𝛼𝑖

5D 𝜉 = 0 Fixed 1.5 3.1 2.8

5D 𝜉 = 0.8 1.3 1.2 1.6 0.9

3D 𝜉 = 0.8 4.3 1.2 2.4 3.4

• The form factors and average 
beam polarization can be 
measured using single-side 
reconstructed events



1D Distributions
• Proton azimuth angle 𝜙1 in Λ frame

𝑑𝜎

𝑑𝜙1
∝ 1 +

𝛼

3
+ 𝜉

𝜋2

16
𝛼1 1 − 𝛼2 cosΔΦ cos𝜙1

 Corresponding integral asymmetry

𝐴LR = 𝜉
3𝜋

8

1 − 𝛼2

𝛼 + 3
𝛼1 cosΔΦ ≈ 0.17𝜉

• Proton polar angle in the lab frame

𝑑𝜎

𝑑 cos 𝜃1
(0)

∝ 1 + 𝛼 cos2 𝜃1
0
+ 𝜉𝛼1 cos 𝜃1

0
[0.203 1 + 𝛼

+0.054 1 − 𝛼2 cos ΔΦ + 𝒪 10−2 ]

 Integral asymmetry 𝐴FB
(0)

≈ 0.11𝜉

13can be improved



Feasibility study: summary
1. The process 𝑒+𝑒− → 𝐽/𝜓 → Λ → 𝑝𝜋− ഥΛ → ҧ𝑝𝜋+ can be used to control 

the average beam polarization precisely enough for measurement of 
the sin2 𝜃eff

𝑐

𝜎stat 𝜉 ∼ 10−4

Systematic uncertainty is to be considered

2. Longitudinal polarization of electron beam

 improves Λ baryon formfactors measurement accuracy

 improves sensitivity to the 𝐶𝑃 symmetry breaking in Λ decays

 enriches physics of charmed baryons at SCT (this item is to be further 

developed)
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Subtleties and difficulties
1. Luminosity monitoring

2. Effect of the detector magnetic field

3. Effect of the bunch magnetic field

4. Effect of (non-zero) bunch crossing angle

5. Not equal average positive and negative beam polarization 𝜉+ ≠ −𝜉−

6. Accounting the 𝑒+𝑒− → 𝑍 → 𝐽/𝜓 → ΛഥΛ amplitude contribution

7. Effect of natural polarization of positrons

8. …
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Conclusions
1. SCT with polarized electron beam is a unique experiment 

to study neutral weak coupling of charm quark and to 
measure sin2 𝜃eff

𝑐

2. Luminosity control at the 10−6 precision level requires 
dedicated low-angle Bhabha events detector

3. The decay 𝐽/𝜓 → ΛഥΛ can be used as a precise monitor of the 
average beam polarization 𝜉

4. Baryon physics at SCT with polarized electrons seems 
attractive and needs to be considered in detail

5. Reaching new precision frontiers will require consideration 
of new subtle effects
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Backup
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SCT collider
➢ Beam energy: from 1 to 3 GeV

➢ ℒ = 1035 cm−2s−1 @ 2 GeV

➢ Longitudinal polarization of the electron beam

➢ Crab-waist collisions

o Beam size in the interaction region

20 μm × 0.2 μm × 10 mm

o Beams crossing angle 60 mrad
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𝑨𝑭𝑩 at LEP
• Annihilation process 𝑒+𝑒− → 𝑍 → 𝑓 ҧ𝑓, unpolarized cross-section

𝑑𝜎

𝑑 cos 𝜃
∝ 𝐴 1 + cos2 𝜃 + 𝐵 cos 𝜃

• Forward-backward asymmetry

𝐴𝐹𝐵
𝑓

≡
𝜎𝐹 − 𝜎𝐵
𝜎𝐹 + 𝜎𝐵

=
3

4
𝐴𝑒𝐴𝑓,

𝐴𝑓 ≡
2𝑔𝑣

𝑓
𝑔𝑎
𝑓

𝑔𝑎
𝑓 2

+ 𝑔𝑣
𝑓 2 =

1 − 4 𝑄𝑓 sin2 𝜃eff
𝑓

1 − 4 𝑄𝑓 sin2 𝜃eff
𝑓
+ 8 𝑄𝑓 sin4 𝜃eff

𝑓

• Counting experiment
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SLC Experiment
• Polarized beam gives access to the left-right asymmetry

𝐴𝐿𝑅 ≡
𝜎+ − 𝜎−
𝜎+ + 𝜎−

= 𝐴𝑒𝜉

𝜉 is the average polarization of the electron beam

• Forward-backward asymmetry with polarized beam

𝐴𝐹𝐵
𝑓

=
3

4
𝐴𝑓

𝐴𝑒 + 𝜉

1 + 𝐴𝑒𝜉

• Left-right forward-backward cross-section ratio

𝐴𝑓 =
4

3

𝜎𝐿𝐹
𝑓
+ 𝜎𝑅𝐵

𝑓
− 𝜎𝐿𝐵

𝑓
− 𝜎𝑅𝐹

𝑓

𝜎𝐿𝐹
𝑓
+ 𝜎𝑅𝐵

𝑓
+ 𝜎𝐿𝐵

𝑓
+ 𝜎𝑅𝐹

𝑓

Counting experiment with direct measurement of 𝐴𝑓
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BESIII analysis
• 1.31 × 109 𝐽/𝜓 events

• 𝐽/𝜓 → Λ → 𝑝𝜋− ഥΛ → ҧ𝑝𝜋+ signal 
yield 0.42 × 106 (with 400
background events)

• The results

ΔΦ = 42.4 ± 0.6 ± 0.5 ∘

𝛼 = 0.461 ± 0.006 ± 0.007
𝛼1 = +0.750 ± 0.009 ± 0.004
𝛼2 = −0.758 ± 0.010 ± 0.007
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Global 
EW fit

https://doi.org/10.1016/j.ppnp.2019.02.007

𝑝-value is 0.24

23
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Experiment at SCT
1. Set beam energy at 𝑠 ≈ 𝑚 𝐽/𝜓 , about 400 bunches circulate simultaneously

2. Set random polarization 0, 𝜉+ or 𝜉−, 𝜉+ ≈ −𝜉−, for each 𝑒− bunch 

3. Count numbers of 𝐽/𝜓 → hadrons events 𝑁+ and 𝑁− for the positive and 
negative polarizations 𝜉+ and 𝜉−

𝑁± ∼ 1012, event rate ≈ 100 kHz

4. Calculate the cross sections and left-right asymmetry

𝜎± =
𝑁±

ℒ±𝜀det
, 𝐴𝐿𝑅 =

𝜎+ − 𝜎−
𝜎+ + 𝜎−

• Luminosity monitoring and backgrounds

 Statistical precision 𝜎ℒ/ℒ ∼ 10−6 is needed

 Multiplicative bias ℒ±
′ = 1 + 𝜅 ℒ± vanishes

 Additive bias 𝛿𝑁 should be controlled at the level of 10−3
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Lambda decay form factor
• Λ → 𝑝𝜋− decay with Λ polarization 𝝎 and 𝜋− momentum 𝒒:

𝑑Γ

𝑑Ω
∝ 1 + 𝛼1𝝎 ⋅ 𝒒

• ഥΛ → ҧ𝑝𝜋+:
𝑑Γ

𝑑Ω
∝ 1 + 𝛼2𝝎 ⋅ 𝒒

• CP symmetry implies 𝛼1 = −𝛼2. CP asymmetry

𝐴Λ ≡
𝛼1 + 𝛼2
𝛼1 − 𝛼2

is about 5 × 10−5 within the standard model
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Feasibility study: the procedure
1. Generate phase-space distributed events with EvtGen

2. Accept-reject algorithm with probability proportional to 𝑊 𝜁

3. Simple detection efficiency (min 𝑝𝑡 = 60 𝑀𝑒𝑉, min 𝜃 = 10∘), 
perfect momentum resolution and perfect identification

4. Maximum likelihood fit with likelihood function

−2 ln ℒ = −2

𝑖=1

𝑁

ln𝑊 𝜁𝑖 + 2𝑁 ln

𝑗=1

𝑀

ln𝑊 ሚ𝜁𝑗 , 𝑀 ≫ 𝑁

27

Signal 

events

PHSP 

normalization 

events



Signal yield and
Detection efficiency
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• 𝑝𝑡 > 60 MeV and 𝜃 > 10∘ give

 Double-side detection efficiency 𝜀det = 0.72

 Single-side detection efficiency 𝜀det
ss = 0.84

• ℬ1 ≡ ℬ 𝐽/𝜓 → ΛഥΛ = 1.9 × 10−3

• ℬ2 ≡ ℬ Λ → 𝑝𝜋− = 0.64

• 𝑁sig
0 = 1012 × ℬ1 × ℬ2

2 ≈ 0.8 × 109

𝐽/𝜓 → Λ → 𝑝𝜋− ഥΛ → ҧ𝑝𝜋+



2D Distribution
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𝑑𝜎

𝑑 cos 𝜃 𝑑 cos 𝜃1
∝ 1 + 𝛼 cos2 𝜃 + 𝜉 1 + 𝛼 𝛼1 cos 𝜃 cos 𝜃1

• Polarization makes cos 𝜃 and cos 𝜃1 correlated

• Asymmetry can be formed

𝐴FB ≡
𝜎fwd − 𝜎bwd
𝜎fwd + 𝜎bwd

= 𝜉
3𝛼1
4

𝛼 + 1

𝛼 + 3
≈ 0.24𝜉

𝜎fwd ≡ න

cos 𝜃 cos 𝜃1>0

𝑑𝜎

𝑑 cos 𝜃 𝑑 cos 𝜃1
𝑑 cos 𝜃 𝑑 cos 𝜃1

𝜎bwd ≡ න

cos 𝜃 cos 𝜃1<0

𝑑𝜎

𝑑 cos 𝜃 𝑑 cos 𝜃1
𝑑 cos 𝜃 𝑑 cos 𝜃1

𝜉 = 0

𝜉 = 1



Two-step procedure
• Data set composition:


1

3
𝑁0 events with unpolarized beam


1

3
𝑁0 events with +𝜉


1

3
𝑁0 events with −𝜉

• Step 1: measure form factors with 
the unpolarized beam data

• Step 2: measure 𝜉 with polarized 
beam data and externally 
constrained form factors

30

Setup

(𝜉 = 0.8)

SCT one-year 𝝈 𝝃 (𝟏𝟎−𝟒)

Nuisance FFs Fixed FFs

3D 1.6 1.2

2D 1.9 1.6

1D azimuth 4.5 2.5

1D polar lab

𝐴𝐵𝐹 5.2

𝐴𝐿𝑅 10

𝐴𝐵𝐹
0 24



Luminosity monitoring

𝜎± =
𝑁±

ℒ±𝜀eff

• Statistical accuracy 𝜎ℒ/ℒ ∼ 10−6 is needed

 Multiplicative systematic uncertainties vanish in asymmetry

• ℒ monitoring with Bhabha events

𝜎 𝑒+𝑒− → 𝑒+𝑒− 𝜃>10∘ ≈ 1 × 10−30 cm2 ≈ 𝜎 𝑒+𝑒− → 𝐽/𝜓

 Bhabha events statistics will limit precision

• ℒ monitoring with dedicated device at low angle

 Would provide good support for the sin2 𝜃eff measurement

 The device should be able to measure bunch-by-bunch luminosity
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Detector magnetic field
• 𝑐𝜏 Λ = 7.90 mm

• Λ spin rotation in magnetic field

𝜔 =
−2𝐵𝜇Λ𝜇𝑁

ℏ
, 𝜇Λ = −0.613

• Λ spin rotation in 1.5 𝑇 magnetic field is about 30 mrad
 A ∼ 10−3 effect, probably should be considered

• Λ flight length-dependent correction

 Requirements for the spatial and vertex resolution
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Bunch magnetic field at SCT
• Bunch current 4.2 mA

• Beam size 0.178μm × 17.8μm × 10mm

• Magnetic field at bunch surface is about 0.01 T

• Correction for the effect of bunch magnetic field should 
be considered in the Bhabha-measured luminosity 
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