Обзор эксперимента BESIII

Нефедов Юрий (for the BESIII collaboration)

ОИЯИ Дубна

Сессия-конференция СЯФ ОФН РАН Новосибирск 2020

BEPCII/BESIII @ IHEP (Beijing)

Location of IHEP in Beijing

History

- BES: 1989 1993 (BEPC)
- **BESII**: 1998 2004 (**BEPC**)
- **BESIII**: 2008 ... (**BEPCII**)

BES = BEijing Spectrometer BEPC = Beijing Electron-Positron Collider

The BESIII Collaboration

- 14 countries, almost 500 members
- 43 institutions from China, 8 others in Asia
 16 Europe (inc. Dubna & Novosibirsk), 5 USA

Beijing Electron Positron Collider (BEPCII)

BESIII detector

Acceptance:93% of 4π

9 layers RPC, 8 for endcaps

BESIII data

World largest samples of J/ ψ , ψ (2S), ψ (3770), ψ (4040), ψ (4180), Y(4260), ...

BESIII physics program

- Charmonium physics
- Charmed hadrons
- Exotic states
- Light hadron spectroscopy
- Tau lepton physics
- R-scan (inclusive hadron yield)
- Baryon form-factors
- Searches for new physics

XYZ particles

Charmonium and XYZ states

Most famous X,Y,Z states

 $M(\pi^{+}\pi^{-}l^{+}l^{-}) - M(l^{+}l^{-})$ (GeV)

Y(4260)?: $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\Psi)$

Most precise cross section measurement to data from BESIII
Two resonant structures are observed:
M = 4222.0±3.1±1.4 MeV; Γ = 44.1±4.3±2.0 MeV
M = 4320.0±10.4±7 MeV; Γ = 101.4±25±10 MeV
Y(4320): first observation in ee → ππJ/Ψ (signif.>7.6 σ)

Y(4220): more observations

PRD96, 032004 (2017) $e^+e^- \rightarrow \pi^+\pi^- \Psi$ (3686) M = 4209.5±7.4±1.4 MeV $\Gamma = 80.1\pm24.6\pm2.9$ MeV Significance 5.8 σ

Significance $> 10\sigma$

Y(4220): more observations

PRD99, 091003 (2019)

 $e^+e^- \rightarrow \omega \chi_{c0}$ M = 4218.5±1.6±4.0 MeV $\Gamma = 28.3\pm 3.9\pm 1.6$ MeV PRL122, 102002 (2019) $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ M = 4228.6±4.1±6.3 MeV $\Gamma = 77.0\pm 6.8\pm 6.3$ MeV

Y summary

Parameters of the Peaks in e⁺e⁻ Cross Sections

Discovery of the Z_c^{\pm} (3900)

PRL 110, 252001 (2013)

 $e^+e^- \Rightarrow \pi^+\pi^- J/\Psi$ at 4260 MeV M = 3899.0±3.6±4.9 MeV $\Gamma = 46\pm10\pm20$ MeV Fraction=(21.5±3.3±7.5)% Significance > 8 σ

 Couples to cc and has charge What is it?
 A tetraquarks state?
 A DD* molecule?
 ...

PWA fit of $Z_c^{\pm}(3900)$

PRL 119, 072001 (2017) $e^+e^- \rightarrow \pi^+\pi^- J/\Psi$

JP=1⁺ preferred over 0⁻, 1⁻, 2⁻, 2⁺ by at least 7σ

Significant contr.
 of ππ S-wave:
 σ, f₀(980), f₀(1370)
 contribution

> ππ S-wave
 increases
 as Ecm increases

> $Z_c(3900) \rightarrow \rho \eta_c$ with significance 3.9 σ (insluding systematics) > hint for $Z_c(4020)$

Theory: A.Esposito et.al., Phys. Lett. B 746, 194 (2015) discrimination between different multi-quark schemes

$\sigma(e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} \rightarrow \pi^{\pm}(\rho^{\mp} \eta_c)) = 48 \pm 11 \pm 11 \ pb \quad @ 4.23 \ GeV$

	BESIII resu	models predictions				
	$\sqrt{s} = 4.226 \mathrm{GeV}$	$\sqrt{s} = 4.258 \mathrm{GeV}$	$\sqrt{s} = 4.358 \mathrm{GeV}$	Type-I	Type-II	Molecule
$R_{Z_{c}(3900)}$	2.2 ± 0.9	< 5.6		230^{+330}_{-140}	$0.27\substack{+0.40 \\ -0.17}$	$0.046^{+0.025}_{-0.017}$
$R_{Z_{c}(4020)}$	< 1.6	< 0.9	< 1.4	6.6	$+56.8 \\ -5.8$	$0.010\substack{+0.006\\-0.004}$

Z_c properties summary

PRL 111, 242001 (2013)

X(3872) related to Y(4220) ?

PRL 122, 202001 (2019)

- $X(3872) \rightarrow \pi^+ \pi^- J/\Psi$
- Clear signal X(3872) in
 Y(4220) region

(Light hist: sideband of J/Ψ Dark hist: peaking J/Ψ background from MC)

$X(3872) \rightarrow \omega J/\Psi$

>

PRL 122, 232002 (2019)

- $e^+e^- \rightarrow \gamma X \rightarrow \gamma \omega J/\Psi$
- At least one additional
 - resonance except X(3872)
- Hard to distinguish the two
 hypotheses since only 2.5σ
 difference

	Mass	Width
X(3872)	$3873.3 \pm 1.1 \; (3872.8 \pm 1.2)$	1.2(1.2)
X(3915)	$3926.4 \pm 2.2 \; (3932.6 \pm 8.7)$	$3.8 \pm 7.5 (59.7 \pm 15.5)$
X(3960)	3963.7 ± 5.5	33.3 ± 34.2

 $X(3872) \rightarrow \pi^{\circ} \chi_{cI}$

PRL 122, 202001 (2019) $e^+ e^- \rightarrow \gamma X (3872), X (3872) \rightarrow \pi^0 \chi_{cJ}$ $\chi_{cJ} \rightarrow \gamma J / \Psi, J / \Psi \rightarrow l^+ l^-$

► First obserfation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

Significance 5.2σ

 $R(J) = \frac{B(X(3872) \rightarrow \pi^0 \chi_{cJ})}{B(X(3872) \rightarrow \pi^+ \pi^- J/\Psi)}$

R(J=0) < 19 (90% CL) $R(J=1) = 0.88^{+0.33}_{-0.27} \pm 0.10$ R(J=2) < 1.1 (90% CL)

X,Y,Z are correlated!

Nucleon (and baryon) form-factors

Electromagnetic Form Factors

- Fundamental properties (internal structure) of nucleon:
 - related to Born cross section
 - represent charge distribution in momentum space
- Can be measured:
 - elastic scattering eN: space-like, real FF
 - $\rightarrow e^+e^-$ annihilation: time-like, complex FF

Proton Form Factors I

ISR: $e^+e^- \rightarrow \gamma p \bar{p}$ PR D99, 092002 (2019)

- ► Cross section: $\sigma(e^+e^- \rightarrow p \bar{p}) \sim$ $|G_M|^2(1 + \cos^2\theta_p) + \frac{4m_p^2}{s}|G_E|^2\sin^2\theta_p$
- Most experiments assume $|G_M| = |G_E| = |G_{Eff}|$
- Proton FF ratio: $R = |G_E/G_M|$

Proton Form Factors II

PRL 124, 042001 (2020) [2.00, 3.08] GeV $e^+e^- \rightarrow p \bar{p}$

> unprecedented accuracy for the time-like region

> $|G_E/G_M|$ and $|G_M|$ are determined with accuracy comparable to the space-like region

Neutron Form Factors

 $[2.00, 3.08] \text{ GeV } e^+ e^- \rightarrow n \overline{n}$

BESIII Preliminary!

- The Born cross sections
 are determined in a wide
 range of √s with
 unprecedented precision
- orrest or solution is a state of the second state of the

Neutron Form Factors

[2.00, 3.08] GeV $e^+e^- \rightarrow n\bar{n}$ BESIII Preliminary!

 G_E/G_M and G_M

have been determined for the first time in the time-like region

 the statistical errors are dominated

Λ Form Factors

- At BESIII it is possible to measure cross-section down to the threshold energy (1 MeV above)
- BESIII observes a threshold enhancement

$\Lambda_{\rm c}$ Form Factors near threshold

Ecm = 4574.5; 4580.0; 4590.0; 4599.5 MeV

- A flat cross-section down to the threshold
- ► $|G_E/G_M|$ is measured for the first time for Λ_C : $G_E = 1.14 \pm 0.14 \pm 0.07$ $G_M = 1.23 \pm 0.05 \pm 0.03$

Summary

- With its excellent detector and huge statistics, BESIII is now the world leader in the energy domain of charm and charmonium
- Many intriguing and puzzling results obtained in spectroscopy of XYZ states
- The BESIII experiment provides an excellent opportunity to measure the nucleon/baryon form-factors
- BEPCII beam energy is upgraded from 2.3 to 2.45 GeV; top-up injection increases luminosity by 30%; BESIII inner detector upgrade in progress
- BESIII will continue data taking for another 5-10 years expect even more results!

Backup

The **BESIII** Collaboration

BESIII detector

NIM A614, 345(2010)

Acceptance:93% of 4π

 $e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$

• J/ ψ clearly identified in dilepton decay modes

Y(4220) summary

Z_c – заряженные чармонийподобные мезоны

> BES-3: $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp}$ (also check $\pi^0 Z_c^0$) $Z_c^{\pm} \rightarrow \pi^{\pm} (J/\Psi \text{ or } h_c \text{ or } \Psi' \text{ or } D^* D^{(*)})$

 Хорошая сигнатура события:
 – распад на одно из известных состояний чармония
 – имеет заряд => Nquark ≥ 4

Поиск $e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp}(3900) \rightarrow \pi^{\pm}(\omega \pi^{\mp})$

PR D92, 032009 (2015)

Выполнен поиск распада $Z_{c}^{\pm} \rightarrow \omega \pi^{\pm}$

Значимого сигнала нет

Пределы (90% CL) на

Борновское сечение

 $\sigma(e^+e^- \rightarrow \pi^{\pm} Z_c^{\mp} \rightarrow \pi^{\pm} \omega \pi^{\mp})$

<0.26 pb для Ecm = 4.23 GeV <0.18 pb для Ecm = 4.26 Gev

Summary on Zc decay modes

Zc	Decay	Mass (MeV/c ²)	Width (Mev)	$\mathbf{J}^{\mathbf{p}}$
$Z_{c}^{+}(3900)$	$\pi^+ J/\Psi$	3899.0±3.6±4.9	46±10±20	1+
Z _c ⁰ (3900)	$\pi^0 J/\Psi$	3894.8±2.3±3.2	29.6±8.2±8.2	
$Z_{c}^{+}(3885)$	(DD*)+	3883.9±1.5±4.2	24.8±3.3±11.0	1+
$Z_{c}^{0}(3885)$	$(DD^{*})^{0}$	3885.7 ^{+4.3} -5.7 ±8.4	$35^{+11}_{-12} \pm 15$	
$Z_{c}^{+}(4020)$	$\pi^{+} h_{c}$	4022.9±0.8±2.7	$7.9 \pm 2.7 \pm 2.6$	
Z _c ⁰ (4020)	$\pi^0 h_c$	4023.8±2.2±3.8		
$Z_{c}^{+}(4025)$	$(D*D*)^+$	4026.3±2.6±3.7	24.8±5.6±7.7	
$Z_{c}^{0}(4025)$	$(D^*D^*)^0$	4025.5 ^{+2.0} 4.7 ±3.1	$23.0\pm6.0\pm1.0$	

• Strong evidence for $Zc(3900) \rightarrow \rho^{\pm}\eta_{c}$

Electromagnetic Form Factors

Baryon-pair production near threshold

➤ The Born cross section for e⁺e⁻ → γ^{*} → BB̄, can be expressed in terms of electromagnetic form factor G_E and G_M:

$$\sigma_{B\bar{B}}(m) = \frac{4\pi\alpha^2 C\beta}{3m^2} [|G_M(m)|^2 + \frac{1}{2\tau} |G_E(m)|^2]$$

is fine structure constant, $\beta = \sqrt{1 - 4m_B^2/m^2}$ is the veloc

 $\alpha = \frac{1}{137}$ is fine structure constant, $\beta = \sqrt{1 - 4m_B^2/m^2}$ is the velocity, $\tau = m^2/4m_B^2$

> The Coulomb factor C=
$$\begin{cases} \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi \alpha}{\beta})} & \text{for a charged } B\overline{B} \text{ pair} \\ 1 & \text{for a neutral } B\overline{B} \text{ pair} \end{cases}$$

➢ For the neutral pair production, the cross section should be 0 at threshold, and is expected to increase with the velocity near the threshold.