Детектор ионов на основе времяпроекционной камеры низкого давления для ускорительной масс-спектрометрии

> А. Е. Бондарь, А. Ф. Бузулуцков, В. В. Пархомчук, А. В. Петрожицкий, А. В. Соколов, Е. А. Фролов, <u>Т. М. Шакирова</u>

Сессия-конференция секции ядерной физики Отделения Физических Наук РАН 10 - 12 марта 2020 г.

Outline

- 1. Accelerator mass spectrometry
- 2. SRIM simulation
- 3. Experimental setup
- 4. Measurements of energy spectra using
- semiconductor detector
- 5. Measurements of track ranges using TPC

Accelerator mass spectrometry

Accelerator mass spectrometry (AMS) is an ultra-sensitive method of counting individual atoms. Usually it is the rare radioactive atoms with a long half-life. The archetypal example is ¹⁴C which has a half-life of 5730 years and an abundance in living organisms of 10⁻¹² relative to stable ¹²C isotope.

AMS facilities operate in more than 100 physical laboratories worldwide, one of which is located in Novosibirsk at Geochronology of the Cenozoic Era Center for Collective Use.

Isotopes used in AMS

Analyzed isotopes	Half life	Stable isotopes	Stable isobars
¹⁰ Be	1,39 million years	⁹ Be	¹⁰ B
¹⁴ C	5730 years	^{12,13} C	¹⁴ N
²⁶ AI	717 thousand years	²⁷ Al	²⁶ Mg
³⁶ Cl	301 thousand years	^{35,37} Cl	³⁶ Ar, ³⁶ S
⁴¹ Ca	102 thousand years	^{40,42,43,44} Ca	⁴¹ K
129	15,7 million years	127	¹²⁹ Xe

In the current AMS BINP setup the time-of-flight technique is used for the isotopes separation. But that technique there is a serious problem of separating the isobars - different chemical elements having the same atomic mass. The typical example are radioactive isotopes ¹⁰Be and ¹⁰B.

Formation and application ¹⁰Be

Time intervals of dating:

- ¹⁴C from 300 years to 40-60 thousand years
- ¹⁰Be from 1 thousand years to 10 million years

Application in-situ and meteoric 10Be:

- exposure dating to identified the growths and decays of the Antarctic ice sheet;
- understanding ice shelf collapse history;
- paleomagnetic excursions history reconstructions using ice cores;
- understanding the erosion rates using depth profiles of mid latitudes outcrops;
- identifying the timing of formation of the impact crater and so forth.

SRIM simulation

*SRIM - The stopping and range of ions in matter

Energy loss as a function of distance in Isobutane for ¹⁰B and ¹⁰Be with an energy of 4.025 MeV at 50 Torr

Energy loss as a function of distance in Isobutane for alpha particles with different energy at 120 Torr

- Ionization losses and track ranges are different for boron and beryllium, so they can be separated with good accuracy.
- To study the method of isobars separation used a triple alpha particle source.

Principle of operation

Schematic layout of the low-pressure TPC

Principle of operation

Typical waveform shape of the signal from the alpha particle in low-pressure TPC

Electric field simulation

To simulate an electric field inside the low-pressure TPC, the following programs were used: **Gmsh**, **Elmer** and **Garfield++**.

Simulated electric field lines in low-pressure TPC

Figure of the lower flange with installed THGEM

Measurements of energy spectra using semiconductor detector

Si Charged Particle Radiation Detectors for Alpha Spectroscopy

Energy spectrum of alpha particles from ²³³U (4.8 MeV), ²³⁹Pu (5.2 MeV) and ²³⁸Pu (5.5MeV) sources, measured using semiconductor detector

Effective gain of THGEM

THGEM effective gain as a function of the voltage in Isobutane at pressures varying from 50 to 160 Torr in the low-pressure TPC

The scheme of effective gas gain measurement

Selecting orthogonal anode tracks

Typical signal waveform from alpha particle

signal from the central part of the anode
 signal from the external part of the anode
 (p=120 mopp, U=1200 B)

The measurement of track ranges

13

The measurement of track ranges with different gain

The alpha-particle source – ²³³U, ²³⁸Pu, ²³⁹Pu

 $E_{\alpha} = 4,816 \text{ M} \Rightarrow B$ $E_{\alpha} = 5,499 \text{ M} \Rightarrow B$ $E_{\alpha} = 5,157 \text{ M} \Rightarrow B$

Pressure = 120 Torr

Shaping time = 500 ns

The lines of alpha particles are worse separated with less effective gain of THGEM and longer shaping time of amplifier

Results

Source	Shaping time	Gain	Pressure	Sigma/Range, %	Separation in sigma between two peaks
3 isotopes	500 ns	40	120 Torr	3.2	3
3 isotopes	200 ns	40	120 Torr	2.2	4
3 isotopes	200 ns	60	120 Torr	1.3	6

Using these results and SRIM code simulation, we see that the isobaric boron and beryllium ions (having range difference of 32%) can be effectively separated at the level exceeding 10 sigma

Spectra of track ranges for ¹⁰B and ¹⁰Be with energy 4.025 MeV in Isobutane at 50 Torr simulated

Silicon nitride membrane windows

Silson

Figure of silicon nitride membrane windows

Fig. 1. Remaining energy after passage of 1 MeV ions through a 50 nm silicon nitride and a 500 nm mylar window. TRIM calculation [2].

M. Dobeli et al., Nucl. Instr. and Meth. B, 219-220 (2004) 415-419 doi:10.1016/j.nimb.2004.01.093

SRIM simulation

Counts

New TPC configuration

Diameter – 178 mm Length – 300 mm

Summary

- ✓ The low-pressure TPC with THGEM readout was developed and successfully tested in our laboratory.
- ✓ The track ranges of alpha-particles were measured in the TPC with a rather high accuracy, reaching 1.3%. Based on these results and SRIM code simulations, one may conclude that the isobaric boron and beryllium ions (having range difference of 32%) can be effectively separated in AMS, at the level exceeding 10 sigma, by measuring the ion track ranges.
- ✓ This technique is expected to be applied in the AMS facility in Novosibirsk for dating geological objects, in particular for geochronology of Cenozoic Era.

Thanks for your attention!

Backup slides

Construction

Diameter 76 mm Length 130 mm

TPC construction: 1 – field shaping rings, 2 – removable top flange,
3 – removable bottom flange, 4 – transitional gap, 5 – THGEM, 6 – sectioned anode, 7 –

alpha particle source, 8 – caprolon rods

The measurement of track ranges

0.05

0.1

0.15

0.2

Pulse area [V*us]

0.25

The measurement of track ranges

Источник а – частиц – ²³³U, ²³⁸Pu, ²³⁹Pu Pressure = 120 torrShaping time = 200 nsGain = 220ତିଁ ₁₆₀ S 180 <u>ලි</u> 200 14(160 120 140100 80 60 40 20 1 1.2 1.4 1.6 1.8 pulse widht*0.0871557+pulse area*0.996195 12 14 10 12 0.2 0.4 0.6 0.8 Pulse widht, mks Pulse widht, mks 5 20 20 0.4 _12 02 0.4 0.5 0.6 0.7 0.8 -8 -7 -6 -5 -6 pulse_area*0.0871557-pulse_widht*0.996195 0.1 0.6 0.7 0.8 0.4 0.5 Pulse area, V*mks Pulse area, V*mks

Fixed threshold

Constant fraction threshold