Observation of unusual slow components in electroluminescence signal of two-phase argon detector

A. Bondar, A. Buzulutskov, E. Borisova, <u>E. Frolov</u>, V. Nosov, V. Oleynikov, A. Sokolov

Budker Institute of Nuclear Physics (Budker INP), Novosibirsk, Russia Novosibirsk State University (NSU), Novosibirsk, Russia

INSTR20, Novosibirsk

Novosibirsk group activity: development of two-phase Ar detectors for dark 2/22 matter search experiments

- Novosibirsk group is currently conducting researches in the frame of R&D program for DarkSide dark matter search experiment:
- Study of electroluminescence phenomena in two-phase Ar (this talk).
- Study of primary scintillations in liquid Ar doped with CH4 (poster).
- Development of new readout techniques in two-phase Ar detectors using SiPM-matrices (paper in preparation).
- Measurement of ionization yields of nuclear recoils in liquid Ar using neutron scattering technique.

Concept of two-phase Ar detectors: introduction of electroluminescence (S2) signal 3/22

EL = Electroluminescence

S2 signal shape in two-phase detectors 4/22

- Motivations to study S2 signal shape:
- Integration time to measure overall S2 amplitude.
- To measure z-coordinate via electron diffusion (related to S2 fast component shape)
- To measure EL gap thickness using S2 shape
- To understand EL mechanisms

S2 slow component problem

Electroluminescence pulse shapes in two-phase Ar have not been systematically studied in wide electric field range. This has been done in this work for the first time.

5/22

The slow component nature is not fully understood. There are few possible mechanisms:

- Due to triplet excimer Ar_2^* (${}^3\Sigma_u^+$) emission
- Due to thermionic emission of e⁻ through liquid-gas interface
- Other exotic mechanisms (TPB-related, delayed e⁻ emission, etc.)

Electroluminescence mechanisms

6/22

According to the current concept, there are three EL mechanisms:

- Excimer (Ar_2^*) emission in VUV (ordinary EL). It has fast (singlet) and slow (triplet) components with time constants of 4 ns and 3.2 µs respectively.
- Neutral bremsstrahlung (NBrS) in visible and NIR. It is fast.
- Emission due to atomic transitions in NIR. It is fast.

"Usual" slow components in EL signal in two-phase Ar due to triplet component of Ar₂* excimer emission

"Usual" slow component in EL signal in two-phase Ar due to electron emission effect at liquid-gas interface 8/22

Experimental setup

PMT and SiPM signal examples (no WLS)

Analysis algorithm

4) Building time histograms of pe peaks: pulse-shapes

2) Rejection of bad events. Mostly due to S2 superposition

3) Selection of events from the 88 keV peak of ¹⁰⁹Cd

Results without WLS: PMT vs SiPM pulse-shapes (time histograms)

Time [µs]

- Slow component contribution increases with electric field

13/22

- Slow component time constant $\tau_{\rm S}$ increases with electric field as well

- Fast component width, reflecting drift time across EL gap, decreases with field

- The SiPM-matrix and 4PMTs data are in good agreement

(Histograms are normalized by area of the fast component)

Results without WLS: PMT vs SiPM τ and contribution of slow component

Slow component has unusual character:

- Its contribution increases with electric field
- Its time constant τ_{s} increases with electric field as well

- The SiPM-matrix and 4PMTs data are in good agreement, despite having different spectral sensitivities

Two hypotheses of slow component nature 15/22

1) Due to new unknown EL mechanism

2) Slow component is present in charge signal itself

Measurements with WLS may shed light upon slow component nature

Results with WLS vs results without WLS: τ and contribution of slow component

- Below 5 Td: no unusual slow component, only excimer one is observed by 3PMT+WLS
- Above 5 Td: the unusual slow component appears and increases, complicating 3PMT+WLS data

Confirmation of hypothesis of slow component in charge signal

If we subtract unusual slow component contribution from 3PMT+WLS data then it shows behavior expected from Ar₂^{*} excimer emission model

Discussion: hypothesis of slow component in charge signal 19/22

Experimental cross section for e- scattering from Ar around Feshbach resonances

M. Kurokawa et al., Phys. Rev. A 84 (2011) 062717 Slow component in charge signal may appear if drifting electrons are delayed on metastable Ar- ions

There is also Ar- (3p⁵4s4p ⁴S) state with ~300 ns lifetime (from atomic beam experiments):

Y.K. Bae, et al., Phys. Rev. Lett. 54 (1985) 789

I. Ben-Itzhak, et al., Phys. Rev. A 38 (1988) 4870

Preliminary results on long component

Data without WLS

20/22

- An additional "long" component appears on a logarithmic scale

(Histograms are normalized by area of the fast component)

Conclusions

- The unusual slow component has been observed in electroluminescence signal of two-phase Ar, its time constant (~5µs) and contribution (~20%) increasing with electric field

- It was shown that this slow component might be due to the charge signal itself. We hypothesize that it is caused by drifting electron trapping on metastable ions.

- The unusual long (~50 μs) component has also been observed. Its nature is yet unclear.

Prospects

- Direct charge measurement

- Measurements with different EL gap thicknesses

- Getting rid of trigger-related signal shape distortion

Practical application for DarkSide 22/22

BACKUP

Photon emission and collisional processes in two-phase Ar doped with Xe and N₂

"Usual" slow component in EL signal in two-phase Ar due to electron emission effect at liquid-gas interface

Slow components in EL signals in two-phase Xe (e- train background)

Trigger for ¹⁰⁹Cd S2 signal

Results with WLS vs results without WLS: τ and contribution of slow component

28/22

This work: triplet $\tau = 3.3 \pm 0.1 \mu s$. [1]: 3.2±0.3µs [2]: 3µs [3]: 3.43µs (at 4.5 Td)

[1] Keto J.W. et al., Phys. Rev. Lett., 33 (1974) 1375
[2] Suzuki M. et al., Nucl. Instr. Meth., 192 (1982) 565
[3] P. Agnes, et al., Nucl. Instr. Meth. A 904 (2018)

Results without WLS: 29/22 **PMT vs SiPM pulse-shapes (time histograms)**

Results for 4PMT (no WLS in setup), 88 keV γ ¹⁰⁹Cd

Results for SiPM with and without WLS in setup

Results without WLS: PMT vs SiPM *τ* and contribution of long component

Long component results: Data comparison with and without WLS

Without WLS

With WLS

Results with fast component: EL gap thickness measurements

Data without WLS: fast component FWHM

