

Measurement of γ^{*}ωπ⁰ **form factor using SND detector at VEPP-2000**

Viktor Zhabin, Alexey Kharlamov Bunker Institute of Nuclear Physics

Сессия-конференция СЯФ ОФН РАН 10 – 12 March 2020

Outline

- I. Introduction
- II. Experiment SND at VEPP-2000 collider
- III. Measurement of $e^+e^- \rightarrow \omega \pi^0$ cross section
 - 1. Selection criteria
 - 2. Determination of $\omega \pi^0$ contribution
 - 3. Background processes
 - 4. Detection efficiency corrections
- IV. Study of $e^+e^- \rightarrow \omega \pi^0$ cross section
 - 1. Approximation in VMD model
 - 2. Joint description of $e^+e^- \rightarrow \omega \pi^0$ and $\omega \rightarrow \mu^+\mu^-\pi^0$

V. Conclusion

Introduction

Motivation

- ωπ⁰ mechanism contribution dominates in π⁺π⁻π⁰π⁰ cross section in energy range 1 – 1.5 GeV and gives some contribution to hadronic vacuum polarization and anomalous magnetic momentum of muon
- $\gamma^* \omega \pi^0$ form factor is used for studying excited resonances, in particular, for measuring parameters of ρ' .
- In decay $\omega \to \mu^+\mu^-\pi^0$, significant discrepancy of $\gamma^*\omega\pi^0$ format factor was found in respect to VMD model predictions (NA60 experiment).

Tasks

- Measuring $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section
- Determining efficiency corrections and systematic uncertainties
- Obtaining $\gamma^* \omega \pi^0$ from the measured cross section
- Fitting the form factor in VMD model

Experiment SND at VEPP-2000 collider

VEPP-2000

Spherical Neutral Detector

1- beam pipe, 2- tracking system, 3- aerogel cherenkov counter, 4- NaI(Tl) crystals, 5- phototriodes, 6- iron muon absorber, 7-9- muon detector, 10- focusing solenoids.

Experiment	C.M. Energy	Number of points	Luminosity	
MHAD2011	1.05 – 2.00 GeV	40	22 pb ⁻¹	
MHAD2012	1.28 – 1.98 GeV	16	13 pb ⁻¹	

Selection criteria and detection efficiency

- \geq 2 charged particles
- ≥ 4 photons
- |d₀| < 1 cm
- |z₀| < 15 cm

Kinematic reconstruction in 4π hypothesis:

- $70 < M_{\pi 0} < 200 \text{ MeV}$
- $\chi^2_{4\pi} < 40$

Detection efficiency for $\omega\pi^0$ and other mechanisms of 4π

Detection efficiency accounts for radiative corrections and is calculated using iterative method. Efficiency depending on the number of iterations:

Determination of $\omega \pi^0$ contribution

To obtain $\omega \pi^0$ contribution, the distribution of the $\pi^+\pi^-\pi^0$ invariant mass is fitted by signal – background model.

Signal and background distribution shapes are obtained from MC.

Background processes

In each energy point for each background process:

 $N_{bkg}(E_i) = \sigma_{bkg} \cdot IL \cdot \varepsilon_{bkg}$

Contributions of different background Contribution to systematic processes to events selected by $\chi^2_{4\pi} < 40$ uncertainty N_{bkg} / N_{exp} • ωπ⁰ 1050 - 16002Е, МэВ **π⁺π⁻π⁰** • $\pi^+\pi^-3\pi^0$ 10⁻ $\pi^{+}\pi^{-}3\pi^{0}$ 0.0 – 1.8 % ωπ⁰π⁰ $\pi^{+}\pi^{-}4\pi^{0}$ 0.0 - 0.4 % $\pi^{+}\pi^{-}4\pi^{0}$ 10⁻² $\omega \pi^0 \pi^0$ 0.0 – 0.1 % K⁺K⁻ $\triangle \mathbf{K}^{\dagger}\mathbf{K}^{\mathsf{T}}\mathbf{2}\pi^{\mathsf{0}}$ $K^{+}K^{-}2\pi^{0}$ 0.0 - 0.1 % π⁺π⁻2π⁰η 10⁻³ other 0.0 - 0.8 % ΚΚπ K_sK∟ 10⁻⁴ 1200 1400 1600 1800 2000 2E. MeV

1600 - 2000

0.5 - 4.3%

0.5 - 7.0%

0.1 - 1.5 %

0.1 - 1.4 %

0.2 - 1.9 %

Detection efficiency corrections

	MHAD2011	MHAD2012	Mean
Lost track	$0.8 \pm 0.4 ~\%$	$0.8 \pm 0.4~\%$	$0.8 \pm 0.4~\%$
Lost photon	$1.1 \pm 0.5~\%$	$2.2\pm0.8~\%$	$1.4 \pm 0.4 ~\%$
χ^2	$1.1 \pm 0.9~\%$	$1.8 \pm 1.4 ~\%$	$1.3 \pm 0.7 ~\%$
Total	$3.1 \pm 1.1 \ \%$	$4.8 \pm 1.7 \ \%$	$3.6 \pm 0.9~\%$

- We has used kinematic reconstruction recovering a lost track or a lost photon.
- Selection $\chi^2_{4\pi} < 40$ is extende to $\chi^2_{4\pi} < 100$.

 $e^+e^- \rightarrow \omega \pi^0$ cross section

Vector Meson Dominance (VMD) model: ρ , $\rho'(1450)$, $\rho''(1700)$

 $F(E) = \sqrt{A_0}\hat{D}_{\rho}(E, m_{\rho}, \Gamma_{\rho}) + \sqrt{A_1}\hat{D}_{\rho}(E, m_{\rho 1}, \Gamma_{\rho 1})e^{i\phi 1} + \sqrt{A_2}\hat{D}_{\rho}(E, m_{\rho 2}, \Gamma_{\rho 2})e^{i\phi 2}$

ρ, ρ', ρ"

Model

 $M_{\rho'}, \, \mathrm{GeV}$

 $\Gamma_{\rho'}, \text{ GeV}$

 $M_{\rho''}, \, \mathrm{GeV}$

 $\Gamma_{\rho''}, \text{ GeV}$

 $\chi^2_{
m MHAD11/12}$

 $\Gamma(\omega \to \pi^0 \gamma)$

 $\phi_{\rho^{\prime\prime}}, ^{o}$ $\chi^2_{\rm total}$

 $P_{\rm total}$

 $\chi^2_{
m param}$

 $\phi_{o'}, o$

 $A_{o''}$

 A_{ρ} $A_{a'}$

Comparison of $e^+e^- \rightarrow \omega \pi^0$ cross sections

The measured $e^+e^- \rightarrow \omega \pi^0$ cross section has following uncertainties:

2E, MeV	1050 - 1600	1600 – 2000
systematical	2.6 - 4.0 %	4.4 – 14.0 %
statistical	2.6 - 3.8 %	4.0 – 21.7 %

Joint description of the form factor in $e^+e^- \rightarrow \omega \pi^0$ and $\omega \rightarrow \mu^+\mu^-\pi^0$ processes

[1] R. Arnaldi et al. (NA60), Phys. Lett. B757 437–444 (2016),
[2] S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D 86, 054013 (2012).

Conclusion

- The $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section is measured with high precision and is in agreement with previous measurement but has better accuracy.
- $\gamma^* \omega \pi^0$ form factor is obtained and fitted by VMD model taking into account $\rho(770)$, $\rho(1450)$ and $\rho(1700)$ in several variants of VMD model.
- It is found that VDM is not capable to jointly describe $e^+e^- \rightarrow \omega \pi^0$ and $\omega \rightarrow \mu^+\mu^-\pi^0$ processes, even if ρ' and ρ'' are taken into account
- Parameters of ρ ' and ρ " mesons differ in different channels.

Intermediate states of $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ for $1 < \sqrt{s} < 2 \text{ GeV}$ $e^+ e^- \rightarrow \omega (782) \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ $e^+ e^- \rightarrow a_1 (1260) \pi \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ π^0 π^+ e^{-} e^{-} . π^0 π^0 π^+ ρ π ω e^+ e^+ a_1 ρ π π $e^+ \, e^- \rightarrow f_0 \ (980) \ \rho \rightarrow \pi^+ \ \pi^- \ \pi^0 \ \pi^0$ $e^+ e^- \rightarrow \rho^+ \rho^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ π^+ π^0 e^{-} e^{-} ρ ρ π π^0 π^+ e^+ e^+ ĴО π^0 π^0

•14

Systematic uncertainty

$2E, \mathrm{MeV}$	1000 - 1200	1200 - 1400	1400 - 1600	1600 - 1800	1800 - 2000
Statistical (MHAD11)	2.6-4.5~%	2.1-2.7~%	2.1-3.8~%	4.0-10.8~%	9.8-54.9~%
Statistical (MHAD12)		2.0-3.0~%	1.8-2.9~%	4.0-7.0~%	8.6-16.1~%
Luminosity	2.0-2.0~%	2.0-2.0~%	2.0-2.0~%	2.0-2.0~%	2.0-2.0~%
Eff. correction	1.7-1.7~%	1.7-1.7~%	1.7 - 1.7~%	1.7 - 1.7~%	1.7 - 1.7~%
Background	0.1-0.9~%	0.1-0.4~%	0.3 - 1.8~%	2.1-4.9~%	2.8-8.1~%
Interference	0.0-0.3~%	0.4 - 1.1~%	1.3-2.5~%	2.7-4.5~%	4.8-7.0~%
Rad. correction	0.1-0.1~%	0.1-0.2~%	0.2-0.5~%	0.5-1.9~%	1.9-8.7~%
Systematical	2.6-2.8~%	2.6-2.9~%	2.9-4.0~%	4.4-7.4~%	6.6-14.0~%

VMD model

Schneider [2]:

$$F_{\gamma\omega\pi}(s) = \sum_{i=0} \frac{g_{\rho(i)\omega\pi} M_{\rho(i)}^2 e^{i\varphi_{\rho(i)}}}{M_{\rho(i)}^2 - s - i\sqrt{s}\Gamma_{\rho(i)}(s)},$$
$$\Gamma_{\rho(0)}(s) = \Gamma_{\rho} \frac{M_{\rho}^2}{s} \left(\frac{s - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2}$$

Kozhevnikov [1]:

$$C_{\rho\omega\pi}(E) = \frac{1 + (Rm_{\rho})^2}{1 + (RE)^2},$$

$$\Gamma_{\rho}(E) \to C_{\rho\omega\pi}(E)\Gamma_{\rho}(E)$$

[1] Динамические эффекты в редких и многочастичных распадах векторных мезонов. / А. А. Кожевников. // Диссертация на соискание ученой степени доктора физ.мат. наук. Новосибирск. 2004.

$$\begin{split} F(s) &= \frac{M_{\rho}^{2} + s(\gamma e^{i\phi_{1}} + \delta e^{i\phi_{2}})}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left(-\frac{sA_{\pi}(s)}{96\pi^{2}F_{\pi}^{2}}\right) - \\ &- \frac{\gamma s e^{i\phi_{1}}}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} \exp\left(-\frac{s\Gamma_{\rho'}A_{\pi}(s)}{\pi M_{\rho'}^{3}\sigma_{\pi}^{3}(M_{\rho'}^{2})}\right) - \\ &- \frac{\delta s e^{i\phi_{2}}}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)} \exp\left(-\frac{s\Gamma_{\rho''}A_{\pi}(s)}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\right) + \\ A_{\pi}(s) &= \ln\frac{M_{\pi}^{2}}{M_{\rho}^{2}} + \frac{8M_{\pi}^{2}}{s} - \frac{5}{3} + \sigma_{\pi}^{3}(s)\ln\frac{1 + \sigma_{\pi}(s)}{1 - \sigma_{\pi}(s)}, \\ &\Gamma_{\rho}(s) &= \frac{M_{\rho}s}{96\pi F_{\pi}^{2}}\sigma_{\pi}^{3}(s), \\ &\sigma_{\pi}(s) &= \sqrt{1 - \frac{4M_{\pi}^{2}}{s}}, \\ &\Gamma_{\rho'}(s) &= \frac{M_{\rho'}}{\sqrt{s}} \left(\frac{s - 4M_{\pi}^{2}}{M_{\rho'}^{2} - 4M_{\pi}^{2}}\right)^{3/2}\Gamma_{\rho'}. \end{split}$$

[2] S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D 86, 054013 (2012).

Radiative correction (ISR)

$$\sigma_{\rm vis}(E) = \int_{0}^{\epsilon} \sigma_{\rm born}(E\sqrt{1-x})F(x,E)\,\mathrm{d}x,$$

$$\begin{split} F(x,E) &= \beta x^{\beta-1} \left[1 + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \frac{3\beta}{4} - \frac{\beta^2(E)}{24} \left(\frac{L}{3} + 2\pi^2 - \frac{37}{4} \right) \right] - \\ &- \beta \left(1 - \frac{x}{2} \right) + \frac{\beta^2}{8} \left[4(2-x) \ln \frac{1}{x} + \frac{1}{x} (1 + 3(1-x)^2) \ln \frac{1}{1-x} - 6 + x \right] + \\ &+ \left(\frac{\alpha}{\pi} \right)^2 \left\{ \frac{1}{6x} \left(x - \frac{2m}{E} \right)^\beta \left(2 \ln \frac{Ex}{m} - \frac{5}{3} \right)^2 \left[2 - 2x + x^2 + \frac{\beta}{3} \left(2 \ln \frac{Ex}{m} - \frac{5}{3} \right) \right] + \\ &+ \frac{L^2}{2} \left[\frac{2}{3} \frac{1 - (1-x)^3}{1-x} - (2-x) \ln \frac{1}{1-x} + \frac{x}{2} \right] \right\} \Theta \left(x - \frac{2m}{E} \right), \\ L &= 2 \ln \frac{2E}{m_e}, \qquad \beta = \frac{2\alpha}{\pi} \left(L - 1 \right) \end{split}$$

[*] Э. А. Кураев, В. С. Фадин. Вычисление радиационных поправок к сечению однофотонной аннигиляции с полощью структурных функций. Препринт ИЯФ 84-44.

Approximation without ρ"(1700)

 $F(E) = \sqrt{A_0} \hat{D}_{\rho}(E, m_{\rho}, \Gamma_{\rho}) + \sqrt{A_1} \hat{D}_{\rho}(E, m_{\rho 1}, \Gamma_{\rho 1}) e^{i\phi 1}$