Статус эксперимента TAIGA

N.Budnev, Irkutsk State University For TAIGA collaboration At present an Imaging Atmospheric Cherenkov Telescopes (IACT) are the main instruments for the ground based high energy gamma astronomy

An Imaging Atmospheric Cherenkov Telescope (IACT) - narrow-angle telescope (3-5 FOV) with a mirror of 4 -28 m diameter which reflects EAS Cherenkov light into a camera with up to 1000 PMT where **Cherenkov EAS image** is formed.

Whipple 10 m Reflector and Camera, 1984 Prototype Imaging System

Types of images seen by atmospheric Cherenkov camera

Imaging Atmospheric Cherenkov Arrays (2-5 IACT)

Whipple **HEGRA** H.E.S.S. MAGIC **VERITAS** S ~ 0.1 km²

About 200 sources of gamma rays with energy more than 1 TeV were discovered with IACT arrays. But a few gamma quantum with energy more then 50 TeV were detected up to now. An area of an array should be a few square kilometers as minimum to detect high energy gamma rays.

Tel 3

Astroparticle physics topics

Каков основной механизм генерации гамма-

квантов высоких энергий?

Какова прозрачность Вселенной?

Гамма–горизонт (O.Blanch and M.Martinez arXiv:astro-ph/0406061v1) в зависимости от красного смещения для нескольких моделей EBL.

Поток диффузных фотонов с учетом возможного вклада переходов ү → ALPs → ү

Сплошные зеленая и рыжая линии – поток диффузных фотонов с учетом возможного вклада перехода в аксионоподобные частицы ALPs (штрихованные линии) в разных моделях. Вклад фона фотонов от Р –Р взаимодействий в нашей Галактике – штрих-пунктирная черная линия.

Physics impact: Lorentz violation test

- High energy photons are produced as a secondaries by highest energy cosmic rays on CMB background
- Photons with energies 10¹⁸ 10¹⁹ eV are subject of intensive searches

$$p + \gamma_{2.7K} \rightarrow \Delta(1232) \rightarrow n + \pi^+ \nearrow \overset{\mu^+ + \nu_{\mu}}{\searrow}_{e^+ + \bar{\nu}_{\mu} + \nu_e}$$
$$\gamma + \gamma$$

 $\gamma \rightarrow 3\gamma$

If Lorentz violation exists, photon is splitting
no photons at 10¹⁸ - 10¹⁹ eV
excess at window 10¹⁶ - 10¹⁸ eV

CTA project: 100 IACT about on aria 10 кm²

Low energies Energy threshold 20-30 GeV 23 m diameter 4 telescopes

(LST's)

Medium energies

100 GeV – 10 TeV 9.7 to 12 m diameter 25 telescopes (MST's/SCTs)

High energies

Up to > 300 TeV 10 km² eff. area @ 10 TeV 4m diameter 70 telescopes

400 000 000 Euro!

Earth atmospheric shower detection with Cherenkov wide angle arrays in the Tunka - Experiment

51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

EAS Cherenkov light detection technique by wide angle arrays in the Tunka - Experiment

Tunka-133 array: 175 Cherenkov detectors distributed on 3 km² area, in operation since 2009y

The Tunka-133 array

The all particles energy spectrum I(E)·E³ energy resolution ~ 15%, in principal up to - 10%

The all particles energy spectrum I(E)·E³

Agreement with KASCADE-Grande, Ice-TOP and TALE (TA Cherenkov).
The high energy tail do not contradict to the Fly's Eye, HiRes and TA spectra..

Mean Depth of EAS maximum X_{max} g·cm⁻²

Mean logarithm of primary mass.

The primary CR mass composition changes from light (He) to heavy up to energy ~ 30 PeV A lightening of the mass composition take place for starting from an energy 100 PeV

Advantage of the Tunka-133 array:

- 1. Good accuracy positioning of EAS core (5 -10 m)
- 2. Good energy resolution (~15%)
- 2. Good accuracy of primary particle mass identification (accuracy of X_{max} measurement ~ 20 -25 g/cm²).
- 3. Good angular resolution (\sim 0.5 degree)
- 4. Low cost: the Tunka-133 3 km² array ~ 10⁶ Euro

TAIGA - Collaboration

- Irkutsk State University (ISU), Irkutsk, Russia
- Scobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU), Moscow, Russia
- Institute for Nuclear Research of RAS (INR), Moscow, Russia
- Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of RAS (IZMIRAN), Troitsk, Russia
- Joint Institute for Nuclear Research (JINR), Dubna, Russia
- National Research Nuclear University (MEPhI), Moscow, Russia
- Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
- Altay State University (ASU), Barnaul, Russia
- Deutsches Elektronen Synchrotron (DESY), Zeuthen, Germany
- Institut fur Experimentalphysik, University of Hamburg (UH), Germany
- Max-Planck-Institut für Physik (MPI), Munich, Germany
- Fisica Generale Universita di Torino and INFN, Torino, Italy
- **ISS**, Bucharest, Rumania

TAIGA - Collaboration

\approx 80 scientists from 15 institutes (EU + Russia)

TAIGA: Imaging + non-imaging techniques

Main Topics for the TAIGA observatory

Gamma-ray Astronomy

Search for the PeVatrons. VHE spectra of known sources: where do they stop? Absorption in IRF and CMB. Diffuse emission: Galactic plane, Local supercluster.

Charged cosmic ray physics Energy spectrum and mass composition

anisotropies from 10¹⁴ to10¹⁸ eV. 10⁸ events (in 1 km² array) with energy > 10¹⁴ eV

Particle physics

Axion/photon conversion. Hidden photon/photon oscillations. Lorentz invariance violation. pp cross-section measurement. Quark-gluon plasma.

TAIGA-HiSCORE (High Sensitivity Cosmic Origin Explorer)

- Wide-angle time- amplitude sampling non-imaging air Cherenkov array.
- Spacing between Cherenkov stations 80-120 m ~ 80 -150 channels / km².

Оптическая станция установки TAIGA – HiSCORE

PMT HAMANTSU R5912

The TAIGA_HiSCORE Station electronic box

9 channel DRS-4 board (0.5 ns step)

TAIGA DAQ

An accuracy of EAS axis direction reconstruction with TAIGA-HiSCORE

First TAIGA-HiSCORE results (0.25 км²)

CATS Lidar, 532 nm, 4 khz, 10^13y/m2

•Excellent HiSCORE calibration source

- flat timing profile
- precision pointing

Precision verification with Laser on-board International Space Station (ISS) <0.1deg

TAIGA-HiSCORE 2019 year setup

The TAIGA – IACT

The TAIGA – IACT: First - 2017y, second - 2019y, third - 2020y situated at the

vertices of a triangle with sides: 300 m, 400 m and 500 m about

- 34-segment reflectors (Davis-Cotton)

- Diameter 4.3 m, area ~10 m²

- Focal length 4.75 m -

Threshold energy ~ 1.5 TeV

Assembling of the 1st mount.

The Camera of the TAIGA-IACT

- 560 PMTs (XP 1911) with
- 15 mm useful diameter of photocathode
- Winston cone: 30mm input size
- each pixel = 0.36 deg
- FOV 10 x 10 deg

Basic cluster: 28 PMT-pixels. Signal processing: PMT DAQ board based on MAROC3 ASIC

Camera of IACT-2

TAIGA-IACT and TAIGA-HiSCORE joint events.

A histogram of the events distribution around direction on the Crab Nebula

The TAIGA particle detectors.

- •Permanent absolute energy calibration of Cherenkov arrays Tunka-133 and TAIGA-HiSCORE.
- Round-the-clock duty cycle;
- Trigger for radio array Tunka-Rex
- Improvement of mass composition data
- Rejection of p-N background

228 former KASCADE-Grande scintillation counters with S=0.64 m²

152 the same underground muon counters in 19 stations.

The TAIGA-Muon scintillation array

Counter dimension 1x1 m^{2.}

Wavelength shifting bars are used for collection of the scintillation light.

Mean amplitude from cosmic muon is 23.1 p,e, with ±15% variation.

A clear peak in amplitude spectrum is seen from cosmic muons in a self trigger mode

Серая область - возможный поток GZK-фотонов в Стандартной Модели для протонного первичного состава. Зеленая область — поток космогенных фотонов в одной из моделей с Лоренц-нарушением. Показаны существующие ограничения на поток фотонов.

Air-shower radio emission

Mechanisms:

- * Geomagnetic effect
- * Asatryan effect

Coherent Broadband Pulses

Advantages:

- * Sensitive to the energy and shower maximum
- * Almost full duty cycle
- * Simple and cost-effective

Disadvantages:

* Low signal-to-noise ratios (SNR) and many transient background (RFI)

Tunka-Rex (Tunka – Radio extension

- * Detected energies 10^{16.5} 10^{18.5} eV
- * Detector area 3 km²
- * 63 antenna stations
- * Frequency band 30 80 MHz
- * Two trigger modes (Tunka-133 and Tunka-Grande)

~100 events per season triggered by Tunka-133		commission of Tunka-Grande	~1000 events per season triggered by Tunka-133 and Tunka-Grande				
18 antennas	25 antennas	w ۱ m 44 antennas	$\Phi\Phi$	63 antennas	$\Phi \Phi \Phi$		TRVO and decommission
2012	2013	2014	2015	2016	2017	2018	2019

Tunka-Rex results

- * Tunka-Rex successfully operated since 2012
- * Energy resolution of 10-15%, shower maximum resolution of 25–35 g/cm²
- * Ideal tool for energy scale calibration between CR experiments (KG + Tunka-133)
- * SALLA will be used in the radio upgrade of the Pierre Auger Observatory
- * Study of inclined air-showers
- * Small engineering arrays
- * Development of self-trigger for radio

CTA & TAIGA

Летом 2020 года планируется установить на изготовленной в ЛЯП ОИЯИ монтировке третьего телескопа камеру на базе полупроводниковых фотоумножителей (SiPM), разработанную Женевским университетом для телескопов SST-1M проекта СТА.

A compact-size wide Field of View IACT with a SiPM-based camera for energies above 10 TeV.

FoV of TAIGA-HiSCORE detectors is 60° but TAIGA-IACT – 10° as a result we have only 1% of joint events.

To study the gamma-ray with energy above 30 TeV we started off a development of a Small Image Telescopes (SAT) with a SiPM-based camera with a FoV up to 60° and an effective recording area of 1m^2 . We intend to test 3 variants of the SAT optical system: spherical mirror, a system of Fresnel lenses, combination of the two mentioned technologies.

Prototype SIT (FOV ~ 20°, S ~ 0.1 m², 49 SIPM SensL MicroFC-60035-SMT, 6 × 6 mm²) was installed in the Tunka Valley for operation together with the TAIGA-HiSCORE array in September 2019.

A future 10 square kilometer scale hybrid array for astroparticle physics, gamma-astronomy and cosmic ray physics

TAIGA-HiSCORE - array. A net of 1000 non imaging wide-angle detectors distributed on area 10 km² with spacing 100 m about An EAS core position, direction and energy reconstruction.

TAIGA-IACT - array of 12 - 16 IACT with mirrors – 4.3 m diameter. Charged particles rejection using imaging technique.

A site requirement:

- altitude 2000 m about,
- no artificial light background,
- good astroclimat,
- enough vacant rather flat space,
- acceptable logistic condition,
- availability of electrical power Tunka, Altay....?????????

TAIGA-Muon array of scintillation detectors, including underground muon detectors with area -2000 – 3000 m² Charged particles rejection

Summary and outlook

TAIGA aims at establishing a new, hybrid gamma-ray detection technology for >30 TeV

2020 year 1 km² TAIGA setup:

- 120 wide angle Cherenkov detectors of TAIGA HiSCORE "non-imaging" timing array
- 3 Imaging Atmospheric Cherenkov Telescopes of TAIGA-IACT "imaging" array
- 200 m² muon detectors of TAIGA-Muon and Tunka-Grande arrays.
- A point source sensitivity: 2.5 10⁻¹³ TeV/cm² s (300 hours, 30–200 TeV) Commissioning seasons were successful
 - Stable operation, precision calibration in progress, E_{th}~30TeV
 - CR energy spectrum 100 TeV 1 EeV
 - A signal from Crab in agreement with expectation.
 - Joint operation of TAIGA-HiSCORE and IACT: data analyses is in progress

Future plan : 10 square kilometers scale TAIGA + new technologies

- array with about 1000 Cherenkov detectors of TAIGA HiSCORE "non-imaging" timing array
- 12 16 Imaging Atmospheric Cherenkov Telescopes of TAIGA-IACT "imaging" array
- 3000 m² muon detectors of TAIGA-Muon array.
- A point source sensitivity: 2.5 10⁻¹⁴ TeV/cm² s (300 hours, 30–200 TeV)
- Cooperating with CTA
- development of detecting systems, based on SiPM sensitive optical and ultraviolet (UV) bands.
- development of compact-size wide Field of View IACT with a SiPM-based camera.

Thank you for attention!

