BNO INR RAS V.N. Gavrin

BEST (Baksan Experiment on Sterile Transitions) current status

V. N. Gavrin on behalf of BEST collaboration

Institute for Nuclear Research of the Russian Academy of Sciences Moscow

Baksan Neutrino Observatory

- 4 Acoustic gravitational antenna
- 5 Geophysics laboratory
- 6 Gallium-Germanium Neutrino Telescope (SAGE)
- * for the further projects
- EAS array "Andyrchy"

LGGNT - 3,5 km from the entrance 2106 meters of rock coverage crystal schists asid magmatic rock 4700 m.w.e.

> Tunnel entrance

> > Neutrine village

BEST installation

BNO INR RAS .N. Gavrin

1) Pumping gallium from the target into chemical reactors:

inner zone \rightarrow 1 reactor, outer zone \rightarrow 6 reactors. (4.5 h)

2) In each reactor the germanium carrier in the form of GeCl4 is extracted from the metal into aqueous phase.

- 3) Concentration of the aqueous solution by evaporation. (16h)
- 4) Synthesis of GeH4 and placing it into a proportional counter.
- 5) ⁷¹Ge decays are counted.(60 150 days)

Source activity measurement:

- 1) Moving the source into a lead container
- 2) Measuring gamma spectrum at 21.65 m distance with a semiconductor detector (1h)
- 3) Moving the source into a calorimeter
- 4) Measuring the heat emitted by the source (20-21 h)

The ⁵¹Cr electron neutrino source with an estimated activity of 3.28 MCi was delivered to BNO on July 5, 2019.

BNO INR RAS

V.N. Gavrin

The source was immediately placed at the center of the two-zone target of liquid gallium. First stage of the BEST experiment began.

BNO INR RAS

/.N. Gavrin

At 14:02 Moscow time the first irradiation of the two-zone gallium target has started.

Counter

1:1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Installation for synthesis of GeH₄

BNO INR RAS

V.N. Gavrin

Extraction schedule and related parameters

The times of exposure are given in days of year 2019

Source exposure			Extraction		Marra	Extraction officionat		Extraction		Marra	Fortugation officianary		
	Begin		End	from cy	lindrical target	Massa	Extraction	efficiency	from s	pherical target	Massa	Extraction	efficiency
						(topg)		into			(tong)		into
Dayyear	Mo Da Hr Mn	Dayyear	Mo Da Hr Mr	Name	Date (2019)	(tons)	from Ga	GeH4	Name	Date (2019)	(tons)	from Ga	GeH4
186.59	07.05 14:02	196.376	07.15 09:02	Cr1	15 Jul 13:59	40.09	0.97	0.94	Cr11	15 Jul 16:01	7.4	0.98	0.95
197.36	07.16 08:41	206.372	07.25 08:56	Cr2	25 Jul 13:51	40.09	0.97	0.95	Cr21	25 Jul 16:32	7.4	0.97	0.95
207.28	07.26 06:47	216.374	08.04 08:59	Cr3	04 Aug 12:47	40.09	0.98	0.98	Cr31	04 Aug 16:37	7.4	0.97	0.95
217.29	08.05 06:52	226.371	08.14 08:54	Cr4	14 Aug 12:51	40.09	0.98	0.96	Cr41	14 Aug 15:35	7.4	0.97	0.94
227.26	08.15 06:12	236.458	08.24 11:00	Cr5	24 Aug 14:35	40.09	1.00	0.97	Cr51	24 Aug 17:17	7.4	0.99	0.97
237.34	08.25 08:13	246.37	09.03 08:51	Cr6	03 Sep 12:35	40.09	1.00	0.96	Cr61	03 Sep 15:18	7.4	1.00	0.98
247.24	09.04 05:50	256.368	09.13 08:50	Cr7	13 Sep 12:29	40.09	1.00	0.99	Cr71	13 Sep 15:11	7.4	1.00	0.98
257.24	09.14 05:47	266.37	09.23 08:52	Cr8	23 Sep 12:32	40.09	1.00	1.00	Cr81	23 Sep 15:17	7.4	1.00	1.00
267.24	09.24 05:46	276.369	10.03 08:51	Cr9	03 Oct 12:27	40.09	0.95	0.93	Cr91	03 Oct 15:00	7.4	0.97	0.95
277.20	10.04 04:49	286.367	10.13 08:48	Cr10	13 Oct 12:26	40.09	0.99	0.96	Cr101	13 Oct 14:59	7.4	0.99	0.95

10 targets irradiations:

Mean exposure time - 9.18 d;

Masses : 7.4 t and 40.09 t;

Mean extraction eff. from Ga - 98%;

2,5 -2,9 µmol ⁷²Ge, ⁷⁶Ge

BNO INR RAS

V.N. Gavrin

Counting parameters

BNO INR RAS

V.N. Gavrin

DI I				For C	lindrical target preliminary								
						Counter efficiency				Time start of			
5. (L		lling			К-р	oeak	L -peak		counting				
1	Extraction	Extraction Counter name		GeH4	Chan	Before	After	Before	After	mo.da hr:mn			
	name		ure	fractio	nel	cuts	cuts	cuts	cuts				
-	Cr 1	YCN113	635	9.5	3.4	0.3959	0.373	0.3769	0.3551	07.16 15:52			
	Cr 2	YCT3	635	9.5	3.1	0.3955	0.373	0.377	0.3548	07.26 14:57			
	Cr 3	YCNA9	640	10.5	Z.4	0.3959	0.373	0.377	0.3551	08.05 16:38			
	Cr 4	YCT9	635	9.6	3.6	0.3954	0.373	0.377	0.3548	08.15 15:27			
	Cr 5	YCN41	635	10.0	Z.1	0.3954	0.373	0.377	0.3554	08.25 18:58			
	Cr 6	YCT4	630	9.0	3.3	0.3954	0.373	0.377	0.3555	09.04 14:19			
	Cr 7	YCN113	630	10.3	3.4	0.3942	0.371	0.3781	0.3562	09.14 14:49			
	Cr 8	YCT3	640	9.5	3.1	0.3964	0.374	0.3759	0.3542	09.24 15:13			
	Cr 9	YCNA9	635	9.9	Z.4	0.3955	0.373	0.3772	0.3554	10.04 16:16			
200	Cr 10	YCT9	645	9.5	3.6	0.3974	0.374	0.3752	0.3536	10.14 15:00			
		For Inner spherical target preliminary											
						Counter efficiency				Time of start			
	100	Counter fi	lling			K -peak		L -peak		of counting			
-	Extraction	Counter name	Press	GeH4	Chan	Before	After	Before	After	mo da hr:mn			
	name		ure	fractio	nel	cuts	cuts	cuts	cuts	1110.00 10.1101			
	Cr 11	YCT92	630	8.8	3.5	0.3615	0.341	0.3622	0.3413	07.16 15:52			
	Cr 21	YCT2	640	9.5	3.2	0.3968	0.374	0.376	0.3545	07.26 14:57			
	Cr 31	YCN43	650	9.3	Z.3	0.3989	0.376	0.375	0.3532	08.05 16:38			
	Cr 41	YCT97	640	9.2	3.7	0.3971	0.374	0.376	0.3544	08.15 15:27			
	Cr 51	YCN46	650	9.5	Z.8	0.3988	0.376	0.375	0.3533	08.25 18:58			
	Cr 61	YCN42	640	9.8	3.8	0.3966	0.374	0.377	0.3547	09.04 14:19			
-	Cr 71	YCT92	640	9.3	3.5	0.3629	0.342	0.3612	0.3404	09.14 14:49			
	Cr 81	YCT2	645	9.5	3.2	0.3991	0.376	0.3768	0.3550	09.24 15:13			
	Cr 91	YCN43	640	9.1	Z.3	0.3972	0.374	0.3760	0.3543	10.04 16:16			
-	Cr 101	YCT97	650	9.1	3.7	0.3991	0.376	0.3747	0.3531	10.14 15:00			

Additional new system - 2Z (6 extractions: 3,5,9)

Previous system - SYS3

(14 extractions)

l=190mm, ø8=8mm

Ste Paran

Channel name: (3 – SYS3, Z -2Z)+num. slot (1-8); HV:1080-1150V

Session of the Department of Nuclear Physics, Novosibirsk, March 10-12, 2020 V.N. Gavrin

On December 5, 2019, the source was sent for storage to the RIAR

The BEST stages

BNO INR RAS

V.N. Gavrin

1. Work with the ⁵¹Cr source (stage completed on October 25):

- 10 2-zone target exposures by the source from 5 July to 23 October 2019,
- 20 extractions from 2-zone gallium targets,
- 10 calorimetric measurements to measure the source activity,
- 11 spectrometric measurements of ⁵¹Cr source gamma-ray spectrum,
- 20 syntheses and fillings of counters,
- installation of filled counters into counting systems for measurements
- 2. Measurements of ⁷¹Ge decay (completion of the stage March 2020):
- primary data collection and processing,
- preliminary data analysis
- comparative crosscheck analysis of data by the BEST collaborators

3. Tests and checks (February-March 2020):

- production of ³⁷Ar, ⁷¹Ge and ⁶⁹Ge isotopes
- verification of counting systems,
- measurement of the counters volumetric and peak efficiencies with using of ³⁷Ar, ⁷¹Ge and ⁶⁹Ge isotopes,
- estimation of all systematic uncertainties

4. Interpretation and presentation of results (May 2020)

BNO INR RAS V.N. Gavrin

Gamma-ray spectroscopy

Measured nuclide impurities in the ⁵¹Cr source and their contribution to the source activity measurement at the reference time 14:02 on 05.07.2019

		Isotope, T _{1/2}	Energy in the	Output	ns	n _f	Activity on July	W,
			line, keV	lines, %			5, MCi	mW
	1	¹³⁷ Cs, 30.05y	662	85	229	1268	8.5×(1±0.23)	0.06
	2	⁹⁵ Zr, 64d	724	11.1	356	768	60×(1±0.12)	2.1
			757	54.38	334	748		
	3	⁹⁵ Nb, 35d	766	99.8	1313	682	87×(1±0.04)	1
	4	¹³⁴ Cs, 2.06y	796	85.5	217	626	3.3×(1±0.18)	0.041
	5	⁵⁸ Co, 70.85d	811	99.44	141	632	6.0×(1±0.27)	0.08
	6	⁵⁴ Mn, 312d	835	100	963	570	13×(1±0.05)	0.10
•	7	⁴⁶ Sc, 83.8d	889	100	254	569	5.2x(1±0.10)	0.07
נ			1120	100	346	400		
9	8	⁵⁹ Fe, 44.5d	1099	57	403	401	23×(1±0.07)	0.22
			1291	43.2	383	97		
	9	⁶⁰ Co, 5.27y	1173	100	1863	286	6.6x(1±0.03)	0.11
			1332	100	2300	85		
	10	¹²⁴ Sb, 60.2d	1690	47.5	341	16	5.8×(1±0.06)	0.10
			2091	5.5	49	3		
	11	¹⁵⁴ Eu (?), 8.6y	1274	34.9	88	114	0.86×(1±0.18)	0.010
			1595	1.8	13	13		
	Σ							2.9

(V.V. Gorbachev, Poster session at XXXV International Conference on Equations on State for Matter, *Elbrus, KBR, March 1-6, 2020*)

From 11 spectrometric measurements of gamma radiation of the source was obtained:
the total amount of heat release from impurity radionuclides is 2.9 ± 0.5 mW, which is ~ 4.10⁻⁶ of the initial ⁵¹Cr source power, and can be neglected;
confirmation of a high purity of the material used to produce the ⁵¹Cr source

Source power measurements with the calorimeter system. (afternoon talk Yu. Kozlova)

The source activity was measured by its heat release in the calorimetric system. 10 measurements of the ⁵¹Cr neutrino source activity were done. The obtained value of the neutrino source activity on 05.07.2019 at 14:02 is 3.4099 ± 0.008 MCi (total uncertainty includes the uncertainties of heat release (0.015%) and energy release (0.23%) added in quadrature). (Using a conversion factor of 217.857 W/MCi ⁵¹Cr the heat power of the ⁵¹Cr source was 742.87 W on July 5, 2019)

For the first time, an artificial neutrino source of such high intensity was produced and for the first time so high accuracy in measuring such high activity was achieved.

According to the passport from RIAR an estimated source activity was **3.55 MCi** on July 2, 2019 at 09:40 (*which corresponds* **3.28** *MCi at the delivered time to BNO on July 5, 2019*)

НАИМЕНОВАНИЕ	Закрытый источник гамма-излучения на основе радионуклида хром-57							
тип	до	ГОВОР №	697/64/10286-Д					
СЕРИЙНЫЙ НОМЕР	001 3A	KA3 №						
ЗАКАЗЧИК	Институт ядерных исслед	ований Росс	ийской академии наук, г. Москва					
	ХАРАК	ТЕРИСТИКИ	1					
1 Радионукли	д		хром-51 (51 Cr)					
2 Физическое	и химическое состояние радиону	клида						
в источнике			твердое, металл					
3 Расчетная а	ктивность Cr-51 на 09:40 02.07.2	019, ПБк (МКи	n) 131 (3,55)					
4 Материал ко	орпуса источника		коррозионностойкая сталь 12Х18Н10Т					
5 Габаритные	размеры источника, мм							
	диаметр		96 ^{+0,1}					
	высота		122					
6 Размер акти	вной части, мм							
	диаметр		88 ^{+0,11}					
	высота, не более		111					

ПАСПОРТ № 49794 НА ЗАКРЫТЫЙ РАДИОНУКЛИДНЫЙ ИСТОЧНИК

BNO INR RAS

/.N. Gavrin

BNO INR RAS

BEST (⁵¹Cr) 3.4 MCi source Statistics of the experiment Expected v capture rates from the source in each zone in the absence of oscillation for 10 exposures from 3.4 MCi source :

	N₂	So	Source exposure (day) Begin End Duration		Decay factor	Production rate at the End (at/day)	Total number of the captures (atoms)	Production rate at the End (at/day)	Total number of the captures (atoms)
		Begin				in Out	er target	in Inner target	
	1	186.59	196.38	9.79	1.0000	73.0	472.3	70.0	452.9
	2	197.36	206.37	9.01	0.7636	55.7	342.9	53.5	328.8
	3	207.28	216.37	9.09	0.5958	43.5	269.0	41.7	258.0
	4	217.29	226.37	9.09	0.4638	33.9	209.4	32.5	200.8
ĺ	5	227.26	236.46	9.20	0.3614	26.4	164.4	25.3	157.6
ĺ	6	237.34	246.37	9.03	0.2808	20.5	126.2	19.7	121.1
	7	247.24	256.37	9.13	0.2192	16.0	99.2	15.3	95.1
ĺ	8	257.24	266.37	9.13	0.1707	12.5	77.3	11.9	74.1
	9	267.24	276.37	9.13	0.1329	9.7	60.2	9.3	57.7
	10	277.20	286.37	9.17	0.1036	7.6	47.0	7.2	45.1

> Total number of the captures in zones (outer, inner) ~ 1870 ,

1790

BNO INR RAS

V.N. Gavrin

⁵¹Cr ~3.4 MCi source, expected production rate ⁷¹Ge at the start of the first exposure:

70 (inner) and 73(outer) at/d

> Total number of ⁷¹Ge pulses in zones (outer, inner) ~ 934, Production rate from solar v : [~0.0197 atoms ⁷¹Ge/(day – 1 tonne Ga)] 1.18 at. ⁷¹Ge in 8 tonne of Ga, 6.20 at. ⁷¹Ge in 42 tonne of Ga

> Statistical uncertainty:

±3.7% in 1 zone

> Total systematic uncertainty : $\pm 2.6\%$ (preliminary)

896

The region in Δm^2 - sin²(2 θ) space to which BEST(⁵¹Cr) will be sensitive

The region in Δm^2 - sin²(2 θ) space to which BEST(⁵¹Cr) experiment combined with SAGE source experiments will be sensitive

The region in Δm^2 - sin²(2 θ) space to which BEST(⁵¹Cr) experiment combined with 4Ga

⁵¹Cr ~3.4 MCi source, expected production rate ⁷¹Ge at the start of the first exposure: 70 (inner) and 73(outer) at/d

BEST (⁵¹Cr) 3.4 MCi source Statistics of the experiment

Expected v capture rates from the source in each zone in the absence of oscillation for 10 exposures from 3.4 MCi

S №	Ource : Source exposure (day)		Decay factor	Production rate at the End (at/day)	Total number of the captures (atoms)	Production rate at the End (at/day)	Total number of the captures (atoms)		
	Begin	gin End Duration			in Out	er target	in Inner target		
1	186.59	196.38	9.79	1.0000	73.0	472.3	70.0	452.9	
2	197.36	206.37	9.01	0.7636	55.7	342.9	53.5	328.8	
3	207.28	216.37	9.09	0.5958	43.5	269.0	41.7	258.0	
4	217.29	226.37	9.09	0.4638	33.9	209.4	32.5	200.8	
5	227.26	236.46	9.20	0.3614	26.4	164.4	25.3	157.6	
6	237.34	246.37	9.03	0.2808	20.5	126.2	19.7	121.1	
7	247.24	256.37	9.13	0.2192	16.0	99.2	15.3	95.1	
8	257.24	266.37	9.13	0.1707	12.5	77.3	11.9	74.1	
9	267.24	276.37	9.13	0.1329	9.7	60.2	9.3	57.7	
10	277.20	286.37	9.17	0.1036	7.6	47.0	7.2	45.1	

source experiments will be sensitive > Total number of the captures in zones (outer,inner) ~ 1870.

1790

896

BNO INR RAS

V.N. Gavrin

> Total number of ⁷¹Ge pulses in zones (outer, inner) \sim 934, **Production rate from solar v :** [~0.0197 atoms ⁷¹Ge/(day – 1 tonne Ga)] 1.18 at. ⁷¹Ge in 8 tonne of Ga, 6.20 at. ⁷¹Ge in 42 tonne of Ga > Statistical uncertainty:

> Total systematic uncertainty :

±3.7% in 1 zone

±2.6% (preliminary)

Main features of the BEST

- A Search for Electron Neutrino disappearance via charged-current (CC) reaction only: $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-}$
- Monochromatic spectrum of compact source observation of the pure sinusoid of oscillation transitions: $D = 1 + \frac{1}{2} 20 + \frac{2}{2} (1 + 2\pi) \Delta m^2 (eV^2) \cdot L(m)$

$$P_{ee} = 1 - \sin^{2} 2\theta \cdot \sin^{2} (1.27 \frac{\Delta m}{E_{v}} (ev)^{-1} L(m))$$

BNO INR RAS

V.N. Gavrin

- Precisely known intensity of the source.
- Possibility to study the dependence of the rate on the distance to the source.

Average path length in each zone: $\langle L \rangle = 53 \& 55 \text{ cm}$

- Very Short Baseline.
- Almost zero background. Mainly from the Sun.
- Very well known experimental procedures developed in
 SAGE.
- Simple interpretation of results.

The evidence of nonstandard neutrino properties:

• there is a significant difference between the capture rates in the two zones

• the average rate in both zones is considerably below the expected rate

V. Gavrin*, V. Barinov, S. Danshin, V. Gorbachev, D. Gorbunov, T. Ibragimova, Yu. Kozlova, L. Kravchuk, V. Kuzminov, B. Lubsandorzhiev, Yu. Malyshkin, I. Mirmov, A. Shikhin, E. Veretenkin

BEST Collaborations

BNO INR RAS

/.N. Gavrin

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia

B. Cleveland

SNOLAB, Sudbury, ON P3Y 1N2, Canada

H. Ejiri

Research Center for Nuclear Physics, Osaka University, Osaka, Japan

S. Elliott, K. Inwook, R. Massarczyk

Los Alamos National Laboratory, Los Alamos NM 87545, USA

D. Frekers

Institut für Kernphysik, Westfälische Wilhelms-Universität Munster, D-48149 Munster, Germany

W. Haxton

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

V. Matveev, D. Naumov, G. Trubnikov, D. Filossov, S. Yakovenko

Joint Institute for Nuclear Research (JINR) Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia

J. Nico National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA

A. Petelin, V. Tarasov, A. Zvir JSC "State Scientific Center Research Institute of Atomic Reactors", Dimitrovgrad, 433510, Russia

R. Robertson

Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA

D. Sinclair

Carleton University 1125 Colonel By Drive Ottawa, K1S 5B6, Canada

J. Wilkerson

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA

* Principal Investigator

Summary

• The BEST experiment - first direct search for neutrino oscillations into 4-th flavor with radioactive source has started 5 July 2019 in BNO INR RAS

• The first stage of BEST is finished and the second stage is nearing completion. Currently preparatory works have begun for the implementation of the third final one.

• Spectrometric measurements of gamma radiation of the source shown a high purity of the material used to production the ⁵¹Cr source and therefore a negligible contributions (~ 10⁻⁶) from impurity radio nuclides to the calorimetric source activity measurements

• Obtained a precise value of the source activity from the calorimetric measurements which is 3.4099 ± 0.008 MCi on 05.07.2019 at 14:02

For the first time in the world, an artificial neutrino source of such high intensity was produced and for the first time so high accuracy in measuring such high activity was achieved.

• ⁵¹Cr results expected in June 2020

Thanks to Rosatom

- The authors express their sincere gratitude for the comprehensive support and fruitful cooperation in the implementation of the BEST experiment to:
- Director General of State Atomic Energy Corporation "Rosatom" A.E. Likhachev,
- Deputy Director General for Innovation Management at "Rosatom" Yu.A. Olenin,
- Director for Management of Scientific and Technical Projects and Programs N.A. Ilina,
- Advisor to Deputy Director General for Innovation Management O.O. Patarakin,
- Project Manager of Division for IP Management and International Cooperation A.Yu. Zagornov, Director of JSC "SSC RIAR" A.A. Tuzov,
- and General Director of Electrochemical Plant JSC S.V. Filimonov.

The work was performed using the scientific equipment of UNU GGNT of shared research facilities BNO INR RAS with financial support of the Ministry of education and science of the Russian Federation: agreement № 14.619.21.0009, unique identifier of the project is RFMEFI61917X0009

Thank you for your attention

BNO INR RAS

V.N. Gavrin

BACKUP SLIEDS

BNO INR RAS

Reassessment of the gallium anomaly arXiv:1906.10980v1 26 Jun 2019

Table 5: Gallium cross sections (in units of 10^{-45} cm²) for ⁵¹Cr and ³⁷Ar neutrinos and their ratios with the central value of the corresponding Bahcall cross section [35] in the first line. The other lines give the cross sections corresponding to the BGT's of Haxton [8, 9], Frekers et al. [5, 9], and the JUN45 calculation presented in this paper.

	$\sigma^{^{51}\mathrm{Cr}}$	$\sigma^{^{51}\mathrm{Cr}}/\sigma_\mathrm{B}^{^{51}\mathrm{Cr}}$	$\sigma^{ m ^{37}Ar}$	$\sigma^{ m ^{37}Ar}/\sigma^{ m ^{37}Ar}_{ m B}$
Bahcall	5.81 ± 0.16		7.00 ± 0.21	
Haxton	6.39 ± 0.65	1.100 ± 0.112	7.72 ± 0.81	1.103 ± 0.116
 Frekers	5.92 ± 0.11	1.019 ± 0.019	7.15 ± 0.14	1.021 ± 0.020
JUN45	5.67 ± 0.06	0.976 ± 0.011	6.80 ± 0.08	0.971 ± 0.011

The new theoretical estimates for ⁵¹Cr and ³⁷Ar cross sections are $6.80\pm0.12\cdot10^{45}$ cm² and $5.67\pm0.10\cdot10^{45}$ cm² respectively which are 2.5-3.0% lower than the Bahcall predictions

er <u>ag</u> e, an	rage, and the statistical significance of the gallium anomaly obtained with the cross sections in Table 5.									
		GALLEX-1	GALLEX-2	SAGE-1	SAGE-2	Average	Anomaly			
R_{Bah}	ncall	0.95 ± 0.11	0.81 ± 0.11	0.95 ± 0.12	0.79 ± 0.08	0.85 ± 0.06	2.6σ			
R_{Hax}	ton	0.86 ± 0.13	0.74 ± 0.12	0.86 ± 0.14	0.72 ± 0.10	0.76 ± 0.10	2.5σ			
R_{Frel}	kers	0.93 ± 0.11	0.79 ± 0.11	0.93 ± 0.12	0.77 ± 0.08	0.84 ± 0.05	3.0σ			
$R_{ m JUN}$	N45	0.97 ± 0.11	0.83 ± 0.11	0.97 ± 0.12	0.81 ± 0.08	0.88 ± 0.05	2.3σ			

Table 7: Ratios of measured and expected ⁷¹Ge event rates in the four radioactive source experiments, their correlated average, and the statistical significance of the gallium anomaly obtained with the cross sections in Table 5.

Figure 3: Comparison of the 90% allowed regions in the $|U_{e4}|^2 - \Delta m_{41}^2$ plane obtained with the cross sections in Table 5. The Bahcall and JUN45 allowed regions are between the two corresponding curves. The Haxton and Frekers allowed regions are enclosed by the corresponding curves, without an upper limit on Δm_{41}^2 .

Figure 4: Comparison of the allowed regions in the $|U_{e4}|^2 - \Delta m_{41}^2$ plane obtained from the Gallium data with the JUN45 cross sections and the allowed regions obtained from the analysis of the data of the NEOS, DANSS and PROSPECT reactor experiments.

"According to JUN45 shell-model calculation of the cross sections of the interaction of v_e 's produced by ⁵¹Cr and ³⁷Ar radioactive sources with ⁷¹Ga, the gallium anomaly related to the GALLEX and SAGE experiments is weaker than that obtained in previous evaluations, decreasing the signicance from 3.0 to 2.3.

Our result is compatible with the recent indication in favor of short-baseline v_e disappearance due to small active-sterile neutrino mixing obtained from the combined analysis of the data of the NEOS and DANSS reactor experiments."

Figure 3: Comparison of the 90% allowed regions in the $|U_{e4}|^2 - \Delta m_{41}^2$ plane obtained with the cross sections in Table 5. The Bahcall and JUN45 allowed regions are between the two corresponding curves. The Haxton and Frekers allowed regions are enclosed by the corresponding curves, without an upper limit on Δm_{41}^2 .

Figure 4: Comparison of t $|U_{e4}|^2 - \Delta m_{41}^2$ plane obtained fi the JUN45 cross sections and tl from the analysis of the data PROSPECT reactor experime

There are some differ in the presented 90%CL Bahcall regions from our previous presented contur

