



STEEL RETURN YOF 12,500 tonnes

SILICON TRACKERS Pixel (100x150 µm) ~16m<sup>4</sup> ~66M channels Microstrips (80x180 µm) ~200m<sup>1</sup> ~9.6M channels

## Electroweak Physics with the CMS Detector at the LHC

FORWARD CALORIMETER Steel + Quartz fibres -2,000 Channels

<u>Vladislav Shalaev,</u> Sergei Shmatov for the CMS Collaboration

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO, crystals

> The Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences 10.03.2020, Novosibirsk.





## Outline



- Z/W production, Drell-Yan
  - total cross sections
  - differential cross sections
- Asymmetries
  - charged asymmetry in W production
  - ✓ forward-backward asymmetry and angular coefficients for Drell-Yan
  - ✓ weak mixing angle
- Multi-boson production
- Anomalous Triple Gouge Couplings
- Vtb measurements,Rare decays

CMS Standard Models Physics Results https://cms-results.web.cern.ch/cms-results/publicresults/publications/SMP/index.html

CMS B Physics and Quarkonia Physics Results https://cms-results.web.cern.ch/cms-results/publicresults/publications/BPH/index.html

CMS Top Quark Physics Results https://cms-results.web.cern.ch/cms-results/publicresults/publications/PhysicsResultsTOP/index.html



#### CMS Integrated Luminosity Delivered, pp





### EWK Gauge Bosons: Z and W production

B [pb]



#### High rate at the LHC

- Provides statistic to study inclusive and differential distributions
- Good understanding of the detectors allow for precision measurements
- Test p-QCD and PDF in different regimes
- Developments and testing of new MC generators and techniques



Good agreement with NNLO SM predictions





 $\overline{q}^{(\prime)} = W^{\pm}, Z, \gamma^*$ 

**CMS-PAS-SMP-15-004** 



## Z Differential Cross Section



Differential cross sections of the transverse momentum  $p_T$ , the optimized angular variable  $\phi^*$ ,  $\eta$ , and the rapidity of lepton pairs are measured





## **Drell-Yan Differential Cross Section**



#### JHEP 12 (2019) 059





EPJ C 75 (2015) 147, arXiv:1412.1115

 $3 \times 10^{-4} < x < 1.0$  and  $6 \times 10^2 < Q^2 < 3 \times 10^6 \text{ GeV}^2$ 

 ✓ The shape of the distribution is defined entirely by the √s and the Bjorken x dependencies of the PDFs, since the dependence on the hard scattering cross section is canceled out. In the Z peak region, the expected double ratio is close to 1 by definition

The total cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV
 The measured differential cross sections are in good agreement with the theoretical calculations (NNLO QCD + NLO EWK)

## **Drell-Yan Differential Cross Section vs Rapidity**





#### EPJ C 75 (2015) 147, arXiv:1412.1115



✓ We observe agreement of the cross section and double ratio measurement with the CT10 NNLO PDF theoretical prediction within uncertainties.

 $\checkmark$  The DY double-differential cross section and double ratio measurements presented here can be used to impose constraints on the quark and antiquark PDFs in a wide range of x.



## Drell-Yan Angular Coefficients and Weak Mixing Angle





Integrated cross section by  $\varphi^*$ 

 $\frac{d^2\sigma}{d\cos\theta^*} = 1 + A_4\cos\theta^* + \cos^2\theta^*$ 

and  $A_{\rm FB} = \frac{3}{8}A_4 = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}},$ 

Lam-Tung Relation:  $A_0 = A_2$ 



EPJ C 78 (2018) 701

#### PLB 750 (2015) 154

#### EPJ C 76 (2016) 325





#### W Differential Cross Section and Charge Asymmetry



đ



 $\mathcal{A}(\eta) = \frac{\sigma_{\eta}^{+} - \sigma_{\eta}^{-}}{\sigma_{\eta}^{+} + \sigma_{\eta}^{-}}$ Gives important constraints on the ratio of u and d quark

 $u\overline{d} \rightarrow W^+$ 

 $d\overline{u} \rightarrow W^{-}$ 

distributions in the proton

✓  $sin^2 \theta_W$  measurements





#### **Multi-boson production**





- Challenging analysis, benchmark for  $H \rightarrow WW$  search
- Limits to anomalous WWy and WWZ couplings set

| Category  | $\sigma_{\rm tot}({\rm pp} \to {\rm WZ}) \ [{\rm pb}]$                                                                                                               |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eee       | $47.11^{+5.01}_{-4.63} \text{ (total)} = 47.11^{+2.88}_{-2.79} \text{ (stat)}^{+0.46}_{-0.41} \text{ (theo)}^{+3.89}_{-3.47} \text{ (syst)} \pm 1.41 \text{ (lumi)}$ |
| $ee\mu$   | $47.16^{+3.87}_{-3.61} \text{ (total)} = 47.16^{+2.31}_{-2.29} \text{ (stat)}^{+0.45}_{-0.38} \text{ (theo)}^{+2.83}_{-2.52} \text{ (syst)} \pm 1.33 \text{ (lumi)}$ |
| $e\mu\mu$ | $47.70_{-3.55}^{+3.58} \text{ (total)} = 47.70_{-1.96}^{+2.00} \text{ (stat)}_{-0.39}^{+0.45} \text{ (theo)}_{-2.61}^{+2.66} \text{ (syst)} \pm 1.42 \text{ (lumi)}$ |
| μμμ       | $49.00^{+3.18}_{-3.03} \text{ (total)} = 49.00^{+1.57}_{-1.53} \text{ (stat)}^{+0.41}_{-0.35} \text{ (theo)}^{+2.42}_{-2.22} \text{ (syst)} \pm 1.39 \text{ (lumi)}$ |





9



## Anomalous Triple Gauge Couplings



Standard model predictions:  $c_{
m W} = c_{
m WWW} = c_{
m b} = 0$ 

Non-zero c-coefficients could indicate a new physics!





https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html



#### NLO pQCD Stringent Tests: V + jets, VV+jets







## NLO pQCD Stringent Tests: V+ jets





#### https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html



## t – physics. Vtb Measurements







#### https://cms-results.web.cern.ch/cms-results/public-results/publications/PhysicsResultsTOP/index.html



V<sub>tb</sub> has been constrained in all t-channel and Wt-channel measurements



- $BR(t \rightarrow Wb) \approx 1$ 
  - $|V_{tb}| >> |V_{td}|, |V_{ts}|$
- f<sub>LV</sub> = 1 for the SM



•





Rare decays:  $B_S/B^0 \rightarrow \mu\mu$ 



 $\begin{array}{ll} \underline{SM \ predictions:} \\ Br(B_{S} \rightarrow \mu\mu): (3.57 \pm 0.30) \times 10^{-9} \\ Br(B^{0} \rightarrow \mu\mu): (1.07 \pm 0.10) \times 10^{-10} \\ \tau_{B_{S}^{0}} = 1.509 \pm 0.004 \ \text{ps} \end{array} \\ \begin{array}{ll} \mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = \frac{N_{S}}{N_{obs}^{B^{+}}} \frac{f_{u}}{f_{s}} \frac{\varepsilon_{tot}^{B^{+}}}{\varepsilon_{tot}} \mathcal{B}(B^{+}) \\ Br(B_{S} \rightarrow \mu\mu): (2.9 \pm 0.27) \times 10^{-9} \\ Br(B_{S} \rightarrow \mu\mu) : (2.9 \pm 0.27) \times 10^{-9} \\ Br(B^{0} \rightarrow \mu\mu) < 3.6 \times 10^{-10} \\ \tau_{\mu^{+}\mu^{-}} = 1.70 \begin{array}{c} +0.61 \\ -0.44 \ \text{ps} \end{array} \right)$ 

#### No significant excess from SM predictions are observed!



#### https://cms-results.web.cern.ch/cms-results/public-results/publications/BPH/index.html



## Conclusions



- CMS shows a excellent performance to detect different signals and produced many EWK measurements at 7, 8 and 13 TeV
- ✓ Precision measurements of inclusive W and Z and di-boson production cross section with large statistic
- ✓ Detailed studies of differential cross sections and many observables, like asymmetries and angular coefficients
- ✓ W and Z production associated to jets, including Z plus b-jets, studied W polarization in W+jets
- ✓ All measurements are so far in agreement with theoretical predictions from the Standard model and results of another experiments. No new physic is observed



## Thanks for your

# attention!



## **EWK Gauge Bosons: Z and W production**



#### High rate at the LHC

- Provides statistic to study inclusive and differential  $\checkmark$ distributions
- Good understanding of the detectors allow for precision measurements
- Test p-QCD and PDF in different regimes  $\checkmark$
- Developments and testing of new MC generators and  $\checkmark$ techniques

| Channel                       |              | $\sigma 	imes \mathcal{B}$ [pb] (total)                                   |
|-------------------------------|--------------|---------------------------------------------------------------------------|
| e <sup>+</sup> e <sup>-</sup> | 1920         | $\pm$ 20 (stat) $\pm$ 60 (syst) $\pm$ 90 (lumi)                           |
| $\mu^+\mu^-$                  | 1900         | $\pm$ 10 (stat) $\pm$ 50 (syst) $\pm$ 90 (lumi)                           |
| $\ell^+\ell^-$                | 1910         | $\pm$ 10 (stat) $\pm$ 40 (syst) $\pm$ 90 (lumi)                           |
|                               |              |                                                                           |
|                               | $e^+\nu$     | $11390\pm90(\mathrm{stat})\pm340(\mathrm{syst})\pm550(\mathrm{lumi})$     |
| $W^+$                         | $\mu^+\nu$   | $11350 \pm 60  ({ m stat}) \pm 320  ({ m syst}) \pm 550  ({ m lumi})$     |
|                               | $\ell^+ \nu$ | $11370 \pm 50 ({ m stat}) \pm 230 ({ m syst}) \pm 550 ({ m lumi})$        |
| W <sup>-</sup>                | $e^-\nu$     | $8680 \pm 80 (\text{stat}) \pm 250 (\text{syst}) \pm 420 (\text{lumi})$   |
|                               | $\mu^- \nu$  | $8510\pm60(\mathrm{stat})\pm210(\mathrm{syst})\pm410(\mathrm{lumi})$      |
|                               | $\ell^- \nu$ | $8580\pm50(\mathrm{stat})\pm160(\mathrm{syst})\pm410(\mathrm{lumi})$      |
| W                             | eν           | $20070 \pm 120 (\text{stat}) \pm 570 (\text{syst}) \pm 960 (\text{lumi})$ |
|                               | μν           | $19870 \pm 80  ({ m stat}) \pm 460  ({ m syst}) \pm 950  ({ m lumi})$     |
|                               |              |                                                                           |

 $\ell \nu$  $19950 \pm 70 \,(\text{stat}) \pm 360 \,(\text{syst}) \pm 960 \,(\text{lumi})$ 



