Экзотические адроны с тяжёлыми кварками

Алексей Нефедьев

(ФИАН)

По совместным работам с В.Бару, Ч.Ванг, А.Филиным, К.Ханхартом, Е.Эпельбаумом

Некоторые ссылки

- "Bottomonium-like states: Physics case for energy scan above the $B\bar{B}$ threshold at Belle-II", A.E. Bondar, R.V. Mizuk, M.B. Voloshin, Mod.Phys.Lett. A32 (2017) 1750025
- "X(3872) in the molecular model", Yu S. Kalashnikova, A.V. Nefediev, VΦH **189** (2019) 603
- "The Belle II Physics Book", Belle-II Collaboration, PTEP 2019 (2019) no.12, 123C01
- "Hadronic molecules", F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Rev.Mod.Phys. 90 (2018) 015004
- "The XYZ states: experimental and theoretical status and perspectives", N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z Yuan, arXiv:1907.07583

Спектр чармония

≡ v) Q (v 3 / 25

Спектр боттомония

≣ ৩৭.৫ 4 / 25

Что мы понимаем о спектре чармония и боттомония

- Ниже порога открытого аромата адронные состояния имеют малые ширины и хорошо описываются кварковой моделью
- Выше порога рождения открытого аромата считать ширину постоянной нельзя пороговые явления
- Важны эффекты унитаризации
- Связь каналов играет важную роль
- Описывать околопороговые состояния формулой Брейта-Вигнера нельзя
- Описывать перекрывающиеся структуры суммой Брейт-Вигнеров нельзя

Совместный анализ данных

Обработка каждого канала реакции отдельно равносильна независимому изучению слона с разных сторон:

Только одновременный анализ всех каналов рождения и распада околопорогового резонанса использует всю полноту информации, содержащейся в данных

Если не $\bar{Q}Q$, то что?

- Компактный объект, состоящий из $(Qq)_{ar{3}}$ и $(ar{q}ar{Q})_3$
- Гибрид

• Тетракварк

Компактный объект вида $(Q\bar{Q})_8$ + глюоны

- Адрокварконий
 - $(Qar Q)_1$ в окружении облака лёгких кварков
- Адронная молекула

Протяжёный объект, состоящий из $(ar Q q)_1$ и $(ar q Q)_1$

Адронная молекула

Молекула = большая вероятность обнаружить резонанс в адронном канале

- Удерживающие силы

 \implies различные модели

Фиксация свободных параметров
 комбинированный анализ данных

Встречались ли мы раньше с адронными молекулами?

Да! Мы знакомы с ними много лет

• 3S_1 Двухнуклонная система с I=0:

 $a = 5.4 \ \mathsf{\Phi}$ м $r_e = 1.7 \ \mathsf{\Phi}$ м

Полюс на RS-I с $E_B = 2.23$ МэВ \Longrightarrow дейтрон

• ${}^{1}S_{0}$ Двухнуклонная система I = 1:

 $a = -24 \ \Phi \mathsf{m}$ $r_e = 2.7 \ \Phi \mathsf{m}$

Полюс на RS-II с $E_B = 0.067$ МэВ \Longrightarrow виртуальный уровень

Симметрия спина тяжёлого кварка (HQSS)

- Экзотические состояния XYZ содержат тяжёлые кварки
- В пределе $m_Q \to \infty \; (m_Q \gg \Lambda_{\rm QCD})$ спин тяжёлого кварка отщепляется

⇒ Симметрия спина тяжёлого кварка (HQSS)

- Для реалистичных m_Q HQSS есть приближённая, но весьма точная симметрия КХД
- Предсказания HQSS зависят от природы состояния
- HQSS позволяет связать свойства адронов с разной ориентацией спина тяжёлого кварка

⇒ Спиновые партнёры

Распады векторных боттомониев

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 11/25

Распады векторных боттомониев

< □ ト < □ ト < ■ ト < ■ ト < ■ ト = のへで 11/25

Двухпионные распады $\Upsilon(10860)$

Двухпионные распады $\Upsilon(10860)$

Распады $\Upsilon(10860)$

Bondar et al. 2011

・ロ ・ ・ (型 ・ く 差 ・ く 差 ・ 差 の へ ()
13/25

Спиновые партнёры W_{bJ} (J = 0, 1, 2)

14/25

イロト イポト イヨト イヨト

Эффективная теория поля для Z_b и W_{bJ}

- HQSS в потенциале \Longrightarrow параметр $\Lambda_{\mathrm{QCD}}/m_b \ll 1$
- Характерный масштаб, генерируемый динамикой связанных каналов

$$p_{
m typ} = \sqrt{m_B\delta} \simeq 500 \; {\sf M}$$
эВ $\delta = m_{B^*} - m_B pprox 45 \; {\sf M}$ эВ

есть мягкая шкала (жёсткая шкала $\Lambda\simeq 1$ ГэВ) \Longrightarrow параметр $p_{\rm typ}/\Lambda\lesssim 1$

Эффективная теория поля для Z_b и W_{bJ}

- \bullet HQSS в потенциале \Longrightarrow параметр $\Lambda_{
 m QCD}/m_b \ll 1$
- Характерный масштаб, генерируемый динамикой связанных каналов

$$p_{
m typ} = \sqrt{m_B\delta} \simeq 500 \; {\sf M}$$
эВ $\delta = m_{B^*} - m_B pprox 45 \; {\sf M}$ эВ

есть мягкая шкала (жёсткая шкала $\Lambda\simeq 1$ ГэВ) \Longrightarrow параметр $p_{\rm typ}/\Lambda\lesssim 1$

Тогда

- Пионая динамика (без дополнительных параметров!) должна включаться явно
- D волны от пионного обмена важны
- Сходимость эффективной теории есть ключевой вопрос

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ク へ ()

Задача связанных каналов

Упругий потенциал:

 $V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^0))$

Связанные каналы:

$$1^{+-}: B\bar{B}^{*}({}^{3}S_{1}, -), B^{*}\bar{B}^{*}({}^{3}S_{1})$$

$$0^{++}: B\bar{B}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{1}S_{0})$$

$$1^{++}: B\bar{B}^{*}({}^{3}S_{1}, +)$$

$$2^{++}: B^{*}\bar{B}^{*}({}^{5}S_{2})$$

Задача связанных каналов

Упругий потенциал:

$$V_{\text{el-el}} = V_{\text{CT}}(\text{to order } O(p^2)) + V_{\pi}$$

Связанные каналы:

$$1^{+-}: B\bar{B}^{*}({}^{3}S_{1}, -), B^{*}\bar{B}^{*}({}^{3}S_{1}), B\bar{B}^{*}({}^{3}D_{1}, -), B^{*}\bar{B}^{*}({}^{3}D_{1})$$

$$0^{++}: B\bar{B}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{5}D_{0})$$

$$1^{++}: B\bar{B}^{*}({}^{3}S_{1}, +), B\bar{B}^{*}({}^{3}D_{1}, +), B^{*}\bar{B}^{*}({}^{5}D_{1})$$

$$2^{++}: B^{*}\bar{B}^{*}({}^{5}S_{2}), B\bar{B}({}^{1}D_{2}), B\bar{B}^{*}({}^{3}D_{2}),$$

$$B^{*}\bar{B}^{*}({}^{1}D_{2}), B^{*}\bar{B}^{*}({}^{5}D_{2}), B^{*}\bar{B}^{*}({}^{5}G_{2})$$

Уравнение Липпманна–Швингера ($V^{\text{eff}} = V_{\text{el-el}} + \sum_{\text{inel}} V_{\text{el-inel-el}}$):

$$T_{\alpha\beta}(M,\boldsymbol{p},\boldsymbol{p}') = V_{\alpha\beta}^{\text{eff}}(\boldsymbol{p},\boldsymbol{p}') - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}}(\boldsymbol{p},\boldsymbol{q}) G_{\gamma}(M,\boldsymbol{q}) T_{\gamma\beta}(M,\boldsymbol{q},\boldsymbol{p}')$$

17 / 25

Комбинированный фит к данным по Z_b

Результаты и выводы для Z_b

- Описание данных хорошее (χ^2 /d.o.f = 0.83)
- Параметры (низкоэнергетические константы и константы связи каналов) извлекаются непосредственно из данных
- Данные совместимы с HQSS
- Эффект (дальнодействующей части) пионного обмена существенен
- Переходы $B\bar{B}^*$ - $B^*\bar{B}^*$:
 - Усилены пионами
 - Отсутствуют в данных (Загадка!)
 - Подавляются S-D переходами
 за счёт контактных членов O(p²)

Роль пионного обмена

Голубая кривая: беспионный фит \implies виртуальный уровень Чёрная кривая: фит с пионами \implies надпороговый резонанс

Предсказание для W_{b1}

23 / 25

Полюса амплитуды и парциальные вероятности

J^{PC}	Состояние	Порог	E_B (от порога) [МэВ]	Вычет
1^{+-}	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
1^{+-}	Z'_b	$B^*\bar{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$
0^{++}	W_{b0}	$B\bar{B}$	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$	$(1.7 \pm 0.6) - i(1.7 \pm 0.5)$
0^{++}	W_{b0}^{\prime}	$B^*\bar{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$	$(-0.9 \pm 0.3) - i(0.3 \pm 0.2)$
1^{++}	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$	$(1.3 \pm 0.2) - i(0.4 \pm 0.2)$
2^{++}	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$	$(0.7 \pm 0.1) - i(0.3 \pm 0.1)$

Парциальные вероятности радиационных переходов из $\Upsilon(10860)$ через $W_{b,J}$

J^{PC}	$B\bar{B}$	$B\bar{B}^*$	$B^*\bar{B}^*$	$\chi_{b0}(1P)\pi$	$\chi_{b0}(2P)\pi$	$\chi_{b1}(1P)\pi$	$\chi_{b1}(2P)\pi$	$\chi_{b2}(1P)\pi$	$\chi_{b2}(2P)\pi$	$\eta_{b0}(1S)\pi$	$\eta_{b0}(2S)\pi$
0^{++}	0.73	_	0.14	_	_	0.05	0.06	_	—	0.002	0.01
1^{++}	-	0.76	_	0.03	0.06	0.02	0.04	0.04	0.05	_	_
2^{++}	0.06	0.07	0.54	_	_	0.03	0.06	0.09	0.16	_	-

Заключение

- До 2003 года спектроскопия чармониев и боттомониев считалась вполне хорошо изученной областью сильных взаимодействий
- С момента открытия *X*(3872) обнаружено около двух десятков экзотических адронов
- Единая картина экзотики на данный момент отсутствует
- Для понимания природы экзотики необходимо
 - учитывать пороговые явления
 - учитывать многоканальность задачи
 - уважать унитарность и аналитичность
 - использовать комбинированный анализ данных
- Несмотря на обилие данных, их всё ещё мало для построения теоретических подходов и надёжной фиксации параметров
- Плохая сходимость эффективных теорий
- Пока не удалось предложить простую и универсальную параметризацию формы линии околопороговых резонансов
- Выживет ли отождествление состояние=полюс?