

Выделение процесса е⁺е⁻ → n n по времени в калориметре

С.И. Середняков

Институт ядерной физики им. Г.И. Будкера СО РАН

Сессия-конференция СЯФ ОФН РАН

10-12 March 2020

e+e-->n+anti-n

Detection of $e^+e^- \rightarrow n \bar{n}$ events

using time measurements in the calorimeter

OUTLINE

- 1. Physical motivation
- 2. Detector, collider, experiment
- 3. Selection of nn events
- 4. Electronics channel
- 5. Signal waveform fitting
- 6. Time resolution ($e^+e^- \rightarrow \gamma\gamma$)
- 7. Time spectra of nn events
- 8. $e^+e^- \rightarrow n\bar{n}$ cross section
- 9. Conlusions

Physical motivation of the experimental study of $e^+e^- \rightarrow n\bar{n}$ process

The internal structure of neutron can be derived from the measured $e^+e^- \rightarrow nn$ cross section.

Expression for nucleon pair e+e- production, C=1 for neutrons $\sigma(e^+e^- \rightarrow B\overline{B}) = \frac{\alpha^2 \beta C^2}{4m^2} \left(|G_M|^2 (1 + \cos^2 \theta) + \frac{4m_B^2}{m^2} |G_E|^2 (1 - \cos^2 \theta) \right)$ Form factors G_E and G_M describe the distribution of electric charge and current inside nucleons m - cms energy $\beta - \text{nucleon velocity}$ $\theta - \text{polar angle}$ $m_b - \text{nucleon mass}$

Existing data on e+e- \rightarrow n \bar{n} cross section

SND detector (since 1995)

2019 run data used in analysis

Selection of n anti-n events

Key features (No tracks^{*}, no photons^{*}, no kinematic χ^2)

- 1 veto μ system
- 2 no cosmic muon track in EMC
- 3 event momentum : P>0.3E_{beam}
- 4 EMC energy : $E_{tot} > 1.05E_{beam}$
- 5 3-d EMC layer energy: $E_3 < 0.7E_{beam}$
- 6 photon χ^2 : >-2.5

Selection results:

- 1 total events recorded ~2 10⁷ events/pb -1
- 2 after applying cuts ~ 100 events/pb -1, including physical, beam and cosmic background and n anti-n events

Selection efficiency :

 $\epsilon_{\rm MC}$ ≈18 % (951,955 MeV)

Physical, beam and cosmic backgrounds

Three types of background for $e+e- \rightarrow n+anti-n$:

- 1. Physical background from processes $e+e \rightarrow \gamma \gamma(\gamma)$, K_SK_L+n $\pi 0(\gamma)$, ppbar etc, suppressed to ~1 pb of detection cross section.
- 2. Cosmic background trigger rate ~ 150 Hz, suppressed to ~ 10^{-3} Hz.
- 3. Beam background suppressed to ~ 1pb by the condition on the total EMC energy $E_{cal} > E_{beam}$.

Flash ADC crates

e+e-->n+anti-n

Flash ADC module (Z-24)

11

Calorimeter channel electronics

Time and energy calculation

Monte Carlo time spectra for e+e- -> $\gamma\gamma$, n anti-n

Time resolution of the SND calorimeter from $e+e \rightarrow \gamma\gamma$ process

Распределение по времени срабатывания "хитов" ЕМС (e+e- $\rightarrow \gamma \gamma$, n+anti-n, run 2019)

 $e+e- \rightarrow n+anti-n$

Time spectra of $e+e- \rightarrow n$ anti-n candidates events

EMC energy threshold – E_{thr}>0.8*E_{beam}

Conclusions: signal and background time spectra overlap strongly but a separation between them is observed

Time spectra of e+e- \rightarrow n anti-n candidates events

The threshold in EMC is raised - E_{thr}>1.05E_{beam}

Conclusions: the beam background is strongly suppressed. The residual cosmic background doesn't effect on statistical and systematic uncertainty.

Measured time spectra for n+anti-n selection

Total energy in EMC for data and MC $e+e \rightarrow n+anti-n$ events

Cos θ distribution for e+e \rightarrow n+anti-n (data vs MC)

Red histogram corresponds to MC uniform over $\text{cos}\theta$ spectra

 $e+e- \rightarrow n$ anti-n cross section

 $\sigma_{\rm B} = N / \varepsilon \, \delta \, L$

- N detected events number, ~130
- L integrated luminosity, ~ 2 pb -1,
- ε MC detection efficiency, ~ 0.18
- δ radiative correction, ~ 0.8
- $\sigma_{\rm B}$ total cross section, ~ 0.5 nb (preliminary)

Systematic uncertainties in the cross section

- 1. Detection efficiency uncertainty ~ 10-15%
- 2. Pulse shape fitting in data and MC ~ 5%
- 3. Physical and beam background uncertainty ~ 5%
- 4. Luminosity and radiative corrections ~ 3%
- 5. Total ~ 15-20 %

Statistical error $\Delta\sigma/\sigma$ at one energy point with L=2 inv.pb is ~ 10%. With higher luminosity $\Delta\sigma/\sigma \rightarrow 3\%$

Results and perspectives

- 1. In experiment with the SND detector at the VEPP-2000 e+e- collider the process $e+e-\rightarrow n$ anti-n has been studied.
- 2. The SND electromagnetic calorimeter based on 1680 NaI(TI) crystals is used as an effective antineutron detector.
- 3. To measure the delay time of produced n anti-n pairs in each calorimeter channel new Flash ADC modules are installed.
- 4. The time resolution of the calorimeter measured using $e+e\rightarrow\gamma\gamma$ process photons is ~ 0.8 ns.
- 5. Due to selection conditions and delay time measurements the events of $e+e- \rightarrow n$ anti-n process are selected.
- 6. The developed method allows accurate measurements of e+e-→ n anti-n cross section
- 7. Now we continue data taking runs above the threshold of e+e-→ n anti-n process with the goal to collect 100 inv.pb. The analysis of recorded data is going on.

Спасибо за внимание!

Thank you for listening !

BACKUPS

The EMC spectrometric channel

- **P** FLT and FADC clock signals are synchronized with the beam revolution frequency (F_{rf} = 12.3 MHz);
- New digitizing module (Z24)*:
 - System-on-Chip Xilinx Zynq-7000 & 6 FLASH ADCs (4 channels, 12 bit, 40 MBPS);
 - In use for data taking since ~ 09.2018;
 - Produces the digitized signal oscillogram that can be processed to reconstruct signal arrival time and energy deposition.
- ¹² We process oscillograms on an online-farm and store them for offline re-processing.
- * NIMA v.824 (2016), pp. 362-364

Digitized signal pulse properties

We expect the signal waveform to be stable for each EMC channel and use a special calibration procedure* to retrieve it;
64 samples;

I FADC value = ~ 0.25 MeV;

* NIMA v.936 (2019) pp.117-118

The correlation function algorithm results on $e^+e^- \rightarrow e^+e^-$ events

Can process almost all signals with the good waveform;

- +Can handle special cases: shifted and saturated signals;
- Relatively slow (~1.2 ms per signal);
- Bad time resolution for small amplitudes.