

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

Лаборатория Физики Высоких Энергий ВШЭ Лаборатория Тяжелых Кварков и Лептонов ФИАН

# ИЗМЕРЕНИЕ СИЛЬНОЙ ФАЗЫ В РАСПАДАХ ОЧАРОВАННЫХ АДРОНОВ В ЭКСПЕРИМЕНТАХ **ВЕLLЕ II И С-ТАU - ФАБРИКЕ**

Попов Виталий

Новосибирск, 2020





### МОТИВАЦИЯ: D-СМЕШИВАНИЕ



#### Вероятности распада для тагированного D0

$$\begin{aligned} |D^0_{phys}(t)\rangle &= g_+(t)|D^0\rangle - \left(\frac{q}{p}\right)_D g_-(t)|\bar{D}^0\rangle, \\ |\bar{D}^0_{phys}(t)\rangle &= g_+(t)|\bar{D}^0\rangle - \left(\frac{p}{q}\right)_D g_-(t)|D^0\rangle, \end{aligned}$$

$$R^{+}(t) = \left(r_{D} + \left|\frac{q}{p}\right| \sqrt{r_{D}}(y'\cos\phi_{D} - x'\sin\phi_{D})\Gamma t + \left|\frac{q}{p}\right|^{2} \frac{(\Gamma t)^{2}}{4}(x^{2} + y^{2})\right)e^{\frac{1}{2}}$$
$$R^{-}(t) = \left(\overline{r}_{D} + \left|\frac{p}{q}\right| \sqrt{\overline{r}_{D}}(y'\cos\phi_{D} + x'\sin\phi_{D})\Gamma t + \left|\frac{p}{q}\right|^{2} \frac{(\Gamma t)^{2}}{4}(x^{2} + y^{2})\right)e^{\frac{1}{2}}$$

Лаборатория Физики Высоких Энергий ВШЭ Лаборатория Тяжелых Кварков и Лептонов ФИАН

> $x' \equiv x \cos(\delta_{K\pi}) + y \sin(\delta_{K\pi});$  $y' \equiv y \cos(\delta_{K\pi}) - x \sin(\delta_{K\pi});$



 $e^{-\Gamma t}$ ,

 $e^{-\Gamma t}$ ,



### МОТИВАЦИЯ: D-СМЕШИВАНИЕ

*Phys*. *Rev*. *D*86,112001(2012)

| N( )                                         | C 1 + 1                                                                                                   | TT 1 ( 1            |               |   |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|---------------|---|
| Mode                                         | Correlated                                                                                                | Uncorrelated        |               |   |
| $K^{-}\pi^{+}$                               | $1 + R_{\rm WS}$                                                                                          | $1 + R_{\rm WS}$    |               |   |
| $S_+$                                        | 2                                                                                                         | 2                   |               |   |
| $S_{-}$                                      | 2                                                                                                         | 2                   |               |   |
| $Y_k$                                        | $1 + Q_k$                                                                                                 | $1 + Q_k$           |               |   |
| $K^-\pi^+,\ K^-\pi^+$                        | $R_{\rm M}[(1+R_{\rm WS})^2 - 4r\cos\delta(r\cos\delta + y)]$                                             | $R_{ m WS}$         |               |   |
| $K^-\pi^+,\ K^+\pi^-$                        | $(1+R_{\rm WS})^2 - 4r\cos\delta(r\cos\delta + y)$                                                        | $1 + R_{\rm WS}^2$  | 000 8         |   |
| $K^-\pi^+, S_+$                              | $1 + R_{\rm WS} + 2r\cos\delta + y$                                                                       | $1 + R_{\rm WS}$    | $\cos \theta$ |   |
| $K^-\pi^+, S$                                | $1 + R_{\rm WS} - 2r\cos\delta - y$                                                                       | $1 + R_{\rm WS}$    |               |   |
| $K^-\pi^+,\ell^-$                            | $1 - ry\cos\delta - rx\sin\delta$                                                                         | 1                   |               |   |
| $K^-\pi^+,  \ell^+$                          | $r^2(1 - ry\cos\delta - rx\sin\delta)$                                                                    | $R_{ m WS}$         |               |   |
| $K^{-}\pi^{+}$ $\bar{V}$                     | $(1 + R_{\rm WS})(1 + Q_i) - r^2 - \rho_i^2 -2(r\cos\delta + y)(\rho_i c_i + y) + 2r\sin\delta\rho_i s_i$ | $1 + R_{\rm WS}Q_i$ | S             | 1 |
| $\mathbf{\Lambda}$ $\pi^{+}, \mathbf{I}_{i}$ |                                                                                                           |                     |               |   |
| $V^ + V$                                     | $(1 + R_{WS})(1 + Q_i) - 1 - r^2 \rho_i^2 -2(r\cos\delta + y)(\rho_i c_i + y) - 2r\sin\delta\rho_i s_i$   | $R_{\rm WS} + Q_i$  |               |   |
| $\Lambda \pi^{+}, I_{i}$                     |                                                                                                           |                     |               |   |
|                                              |                                                                                                           |                     |               |   |

### Статус измерений HFLAV

| Year | Experiment    | Parameter                                             | Fit Result                                                                                                                             |
|------|---------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2012 | <u>CLEO-c</u> | R <sub>D</sub><br>x <sup>2</sup><br>y<br>cosδ<br>sinδ | $(0.533 \pm 0.107 \pm 0.04)$ $(0.06 \pm 0.23 \pm 0.11)$ $(4.2 \pm 2.0 \pm 1.0)\%$ $0.81 + 0.22 - 0.18 + 0.07 - 0.01 \pm 0.41 \pm 0.04$ |
| 2014 | <u>BESIII</u> | cos δ                                                 | $1.02 \pm 0.11 \pm 0.06 \pm 0.00$                                                                                                      |





# МОТИВАЦИЯ: SU(3) В РАСПАДАХ D-МЕЗОНА Заменим $K^-\pi^+$ на $\overline{K^0}\pi^0$ , тогда $Arg(A_{D^0\to\overline{K^0}\pi^0}) \clubsuit Arg(A_{D^0\to K^-\pi^+})$

$$[D_3]^i = \begin{pmatrix} D^0 \\ D^+ \\ D^+_s \end{pmatrix} , \quad [P_8]^i_j = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{$$

Правила сумм:  $\sqrt{2}A_{D^0 \to \overline{K^0}\pi^0} + A_{D^0 \to K^-\pi^+} - A_{D^+ \to \overline{K^0}\pi^+} = 0$   $\sqrt{2}A_{D^0 \to K^0\pi^0} + A_{D^0 \to K^+\pi^-} + \sqrt{2}A_{D^+ \to K^+\pi^0} - A_{D^+ \to K^0\pi^+} = 0$ DCS



4



## ЭВОЛЮЦИЯ КАОНОВ

 $i\frac{\partial}{\partial t} \begin{pmatrix} K^0(t) \\ \overline{K}^0(t) \end{pmatrix} = \left(\mathbf{M}\right)$ 

$$|K^{0}(t)\rangle = \frac{1-\varepsilon}{\sqrt{2}} e^{-i\lambda_{S}t} |K_{S}\rangle + \frac{1-\varepsilon}{\sqrt{2}} e^{-i\lambda_{L}t} |K_{L}\rangle$$
$$|\overline{K}^{0}(t)\rangle = \frac{1+\varepsilon}{\sqrt{2}} e^{-i\lambda_{S}t} |K_{S}\rangle - \frac{1+\varepsilon}{\sqrt{2}} e^{-i\lambda_{L}t} |K_{L}\rangle$$

Тогда для зависимой от времени вероятности распада .. рожденной смеси

$$R(t) = \frac{1}{4}e^{-\Gamma t}|A_{l^{+}}|^{2} \left[ |a|^{2}K_{+} + \left| b\frac{p}{q} \right|^{2}K_{-} + 2Re\left\{ab\frac{p}{q}(1 - e^{\Delta\Gamma t} + 2i\sin(\Delta m t)e^{\frac{1}{2}\Delta\Gamma t})\right\} \right]$$
  
$$\overline{R}(t) = \frac{1}{4}e^{-\Gamma t}|A_{l^{-}}|^{2} \left[ |a|^{2}K_{-} + \left| b\frac{q}{p} \right|^{2}K_{+} + 2Re\left\{ab\frac{q}{p}(1 - e^{\Delta\Gamma t} + 2i\sin(\Delta m t)e^{\frac{1}{2}\Delta\Gamma t})\right\} \right]$$

$$\begin{split} \mathcal{A} - \frac{i}{2} \mathbf{\Gamma} \bigg) \begin{pmatrix} K^{0}(t) \\ \overline{K}^{0}(t) \end{pmatrix} \\ & |K^{0}(t)\rangle = g_{+}(t) | K^{0} \rangle + \left(\frac{q}{p}\right) g_{-}(t) | \overline{K}^{0} \rangle \\ & |\overline{K}^{0}(t)\rangle = g_{+}(t) | \overline{K}^{0} \rangle - \left(\frac{p}{q}\right) g_{-}(t) | K^{0} \rangle \\ & g_{\pm} = \frac{1}{2} \left( e^{-i(m_{1} - \frac{i}{2}\Gamma_{1})} \pm e^{-i(m_{2} - \frac{i}{2}\Gamma_{2})} \right) \end{split}$$



### ЭВОЛЮЦИЯ КАОНОВ



### Асимметрия распадов D



### РЕКОНСТРУКЦИЯ



### Закон сохранения 4-импульса: $(P_{K^0} - P_{\pi l})^2 = P_{\mu}^2$ Выбор из двух решений для импульса каона $|\mathbf{p}_{K}|_{(1,2)} = -\frac{p_{\pi l}\cos\theta(m_{K}^{2}+m_{\pi l}^{2})\pm\sqrt{t}}{2(p_{\pi l}^{2}\cos^{2}\theta-E_{\pi l}^{2})},$ $t = E_{\pi l}^2 \left( 4m_K^2 p_{\pi l}^2 \cos^2 \theta - 4E_{\pi l}^2 m_K^2 + m_{\pi l}^2 (m_K^2 + m_{\pi l}^2) \right)$ **10<sup>5</sup>** Events / 0.01 **10<sup>4</sup>** $10^{3}$ $10^{2}$ ႞ၯ႞ႝႜ 10 0.1 0.2 -0.8-0.6-0.4-0.2 0

 $7 (p_K - p_K^{gen})/p_K^{gen}$ 





### ИСТОЧНИКИ ФОНА

- Фон из первичной вершины;
- Истинные вторичные вершины;



# Малый вклад фазы на малых временах жизни К0.

### KS вето + elD



8





- 200 псевдоэкспериментов для каждого значения сильной фазы; Каждый образец данных 100k событий (50аб^-1);
- Значения сильной фазы в интервале [-180,180];





## РЕЗУЛЬТАТЫ ПОДГОНКИ



- Результаты подгонки показали, что извлечь сильную фазу на полной статистике эксперимента Belle II возможно;
- В восстановлении delta отсутствует bias.







### СРАВНЕНИЕ РЕЗУЛЬТАТОВ

### **BES III (72x10^6 DD)**







### ИЗМЕРЕНИЯ НА С-ТАЈ ФАБРИКЕ

| Требование                                                   | Super Charm-tau<br>factory |  |
|--------------------------------------------------------------|----------------------------|--|
| Хорошее пространственное<br>разрешение, ~100мкм              |                            |  |
| Большая дрейфовая камера/ Мягкие К0                          |                            |  |
| Хорошее импульсное разрешение, $\sigma_{ m p}/{ m p} < 0.01$ |                            |  |
| Работа с D+                                                  |                            |  |

$$\sqrt{2}A_{D^{0}\to\overline{K^{0}}\pi^{0}} + A_{D^{0}\to K^{-}\pi^{+}} - A_{D^{+}\to\overline{K^{0}}\pi^{+}} = 0$$
  
$$\sqrt{2}A_{D^{0}\to K^{0}\pi^{0}} + A_{D^{0}\to K^{+}\pi^{-}} + A_{D^{+}\to K^{+}\pi^{0}} - A_{D^{+}}$$

#### Лаборатория Физики Высоких Энергий ВШЭ Лаборатория Тяжелых Кварков и Лептонов ФИАН





# СЛУЧАЙ СКОРРЕЛИРОВАННОЙ ПАРЫ D-МЕЗОНОВ

 $\psi(3770) \rightarrow D\overline{D}: \qquad \Psi_{D\overline{D}} = \frac{1}{\sqrt{2}} [|D^0_{phys}(t)\rangle|\bar{D}^0_{phys}(t)\rangle]$ 

|                                           | $J/\psi$                        | $\psi(2S)$                            | $\psi(3770)$                                               | (4040)                             | $\psi(4160)$                                                  | $\psi(4415)$                      |
|-------------------------------------------|---------------------------------|---------------------------------------|------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|-----------------------------------|
| $M,  \mathrm{GeV}$                        | 3.097                           | 3.686                                 | 3.773                                                      | 4.039                              | 4.191                                                         | 4.421                             |
| $\Gamma$ , MeV                            | 0.093                           | 0.286                                 | 27.2                                                       | 80                                 | 70                                                            | 62                                |
| $\sigma$ , nb                             | $\sim \! 3400$                  | $\sim 640$                            | $\sim 6$                                                   | $\sim 10$                          | $\sim 6$                                                      | $\sim \! 4$                       |
| $L,  \mathrm{fb}^{-1}$                    | 300                             | 150                                   | 300                                                        | 10                                 | 100                                                           | 25                                |
| N                                         | $10^{12}$                       | $10^{11}$                             | $2 \times 10^9$                                            | $10^{8}$                           | $6 	imes 10^8$                                                | $10^{8}$                          |
| $\sigma$ , nb<br>L, fb <sup>-1</sup><br>N | $\sim 3400$<br>300<br>$10^{12}$ | $\sim 640$<br>150<br>10 <sup>11</sup> | $\begin{array}{c} \sim 6\\ 300\\ 2\times 10^9 \end{array}$ | $\sim 10$<br>10<br>10 <sup>8</sup> | $\begin{array}{c} \sim 6 \\ 100 \\ 6 \times 10^8 \end{array}$ | $\sim 4$<br>25<br>10 <sup>8</sup> |

$$\xi =$$

$$\frac{J}{300^{\circ}} \frac{\psi(25)}{300^{\circ}} \frac{\psi(310)}{100^{\circ}} \frac{\psi(410)}{\psi(410)} \frac{\psi(410)}{\psi(410)} \frac{\psi(410)}{100^{\circ}} \frac{\psi(410)}{10^{\circ}} \frac{\psi(410)}{10$$

$$(t)\rangle - |\bar{D}^{0}_{phys}(t)\rangle|D^{0}_{phys}(t)\rangle]$$



# ЗАКЛЮЧЕНИЕ

- Использование полулептонных распадов К0-мезонов позволяет повысить чувствительность к параметрам рождения смеси K0-antiK0;
- Метод частичной реконструкции позволяет с достаточным разрешением восстановить импульс и время жизни каона в современных экспериментах Belle II, Super c-tau;
- Статистики Belle II достаточно для того, чтобы промерить сильную фазу в нейтральной моде с точностью < 4 deg;</li>
- Дополнительные возможности измерений для Super c-tau.



# **BACKUP SLIDES**



## МОТИВАЦИЯ: D-СМЕШИВАНИЕ СТАТУС



