

Эксперимент Т2К:

последние результаты и перспективы

Марат Хабибуллин (ИЯИ РАН)

Сессия-конференция Секции ядерной физики Отделения физических наук Российской академии наук Новосибирск, 10-12 марта 2020

Смешивание нейтрино (напоминание)

 Собственные состояния слабых взаимодействий нейтрино |v_a > могут быть представлены в виде линейной комбинации собственных массовых состояний |v_i>:

$$|\nu_{\alpha}\rangle = \sum U_{\alpha i} |\nu_{i}\rangle, \quad (\alpha = e, \mu, \tau; i = 1, 2, 3)$$

• Связь – через матрицу Понтекорво-Маки-Накагава-Саката

PMNS (≡ Pontecorvo-Maki-Nakagawa-Sakata) matrix

- трёх углов смешивания θ₁₂, θ₂₃, θ₁₃
- одной СР нарушающей фазы δ_{CP}
- двух разностей Δm²₃₂, Δm²₂₁*)
- иерархии масс (*m*₃>*m*₂ или *m*₃<*m*₂?)
- энергии нейтрино Е
- пройденного расстояния L

*) $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2, i \neq j$

Эксперимент Т2К

T2K = Tokai-to-Kamioka =

ускорительный нейтринный эксперимент с длинной базой

Источник нейтрино

Протонный комплекс J-PARC (Japan Proton Accelerator Research Complex)

Мишень: графит (Ø26 mm × 914 mm) $\mathbf{p} + \mathbf{C} \rightarrow \pi^{+/-} + X$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ \mathbf{E}_{ν} (пик, 2.5°): ~0.6 ГэВ Состав пучка (в пике): ν -режим: ~97% ν_{μ} $\overline{\nu}$ -режим: ~96% $\overline{\nu}_{\mu}$

<u>3 ускорителя:</u> 1) линейный (400 МэВ) 2) малое кольцо (3 ГэВ) 3) основное кольцо (30 ГэВ)

Энергия протонов: 30 ГэВ Мощность пучка: ~515 кВт Структура: 8 bunches Период: 2.48 с Интенсивность: ~2.6 Е14 ppp [ppp = protons per pulse]

марта 2020

- В силу кинематики распада $\pi^+ \to \mu^+ + \nu_{\mu}$ энергетический спектр нейтрино, вылетающих под небольшим углом к оси исходного пионного (протонного) пучка, имеет узкий пик: E_v (@2.5°): ~**0.6 ГэВ**. - В **Т2К** пик для угла **2.5**° соответствует осцилляционному 0.5 максимуму при **L** = **295 км**.

максимуму при L = 295 км.

Ближний детектор INGRID (on-axis)

Ближний детектор **INGRID** (*Interactive Neutrino GRID*):

- расположен на оси пучка (onaxis)
- состоит из 14 +2 модулей
- каждый модуль сэндвич из
 пластикового сцинтиллятора и железа
- дополнительно: протонный модул<mark>Beam center</mark> из пластикового сцинтиллятора

Служит для мониторинга нейтринного пучка (направление и стабильность)

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Ближний детектор ND280 (off-axis)

Ближний детектор ND280

- Трекер = 3 TPC + 2 FGD в магнитном поле 0.2 T (FGD1: plastic scintillator; FGD2: plastic scintillator +water)
- POD; ECaL; SMRD

<u>Задачи ND280</u>

- измерение параметров нейтринного пучка до осцилляций;
- ограничение неопределённостей нейтринного потока и сечений нейтринных взаимодействий

Дальний детектор SK

Super-Kamiokande:

- 🗸 50 тыс. тонн чистейшей воды
- Водный черенковский детектор
- ✓ высокоэффективное (>99%) разделение µ- и e- сигналов
- ✓ GPS синхронизация с пучком J-PARC
- <u>Внутренний детектор (ID):</u>
- ✓ >11000 ФЭУ (∅50 см)
- ✓ 40% photo-coverage
- <u>Внешний детектор</u> (**ОD**):
- ✓ ~2000 PMTs (∅20 cm)

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Экспериментальные данные Т2К

Analyzed data (Jan. 2010 - May 2018): **1.49x10²¹** (v) + **1.64x10²¹** (\overline{v}) POT

Многоступенчатый анализ (очень упрощённая схема):

Анализ данных Т2К

- Вычисляется нейтринный поток для ближнего и дальнего детекторов (используются данные J-PARC, NA61/SHINE и моделирование – FLUKA, GEANT)
- Отбираются события в дальнем детекторе **SK** и формируются **5 наборов данных**: 3 в ν -режиме (μ -CCQE, e-CCQE, e-CC1 π^+) и 2 в $\overline{\nu}$ -режиме (μ -CCQE, e-CCQE)*
- Для получения осцилляционных параметров все 5 наборов данных анализируются одновременно – методом отношения функций правдоподобия (binned likelihood-ratio method): –2ℓn Ҳ(осцил.параметры, другие параметры)
- Данные ближнего детектора используются для ограничения параметров нейтринного потока, сечений взаимодействия и систематических погрешностей

* ℓ -CCQE = Charged-Current Quasi Elastic: $\nu_l n \rightarrow l^- p$ e-CC1 π + = Charged-Current One pion: $\nu_e N \rightarrow e^- N' \pi^+$

Отбор событий в SK

Цель отбора событий: подавление фона от

- космических лучей,
- радиоактивности
 окружающей среды,
- фоновых нейтринных процессов,
- шумов электроники и т.д³²⁰

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Число событий и систематические ошибки

Mode	Expected events (MC)					Systematic	
	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	δ_{CP} = π	Data *)	uncertainties **)	
						(%)	
$ u_{\mu}$	272.34	271.97	272.30	272.74	243	5.12	
$\overline{\nu}_{\mu}$	139.47	139.12	139.47	139.82	140	4.45	
$ u_{e}$	74.46	62.26	50.59	62.78	75	8.81	
$\nu_{\rm e} 1 \pi^+$	7.02	6.10	4.94	5.87	15	18.38	
$\overline{\nu}_{e}$	17.15	19.57	21.75	19.33	15	7.13	

*) 1.49x10²¹ (v) + 1.64x10²¹ (v) POT

**) Систематические ошибки подавлены благодаря ограничениям ближнего детектора ND280, например, для v_µ 14.66% -> 5.12%; v_µ: 12.52% -> 4.45%; v_e: 16.85% -> 8.81%; v_e: 14.4% -> 7.13%

Осцилляционные параметры (Δm^2_{32} , θ_{23}) **Т**2К

16

Поиск СР нарушения arxiv:1910.03887

0.034

0.032

0.03

0.028

0.026 0.024

0.022

0.02

0.65

0.6

0.55

 $-\pi$

 $\sin^2(\theta_{13})$

T2K Run 1-9

T2K + Reactors

T2K Only

27% CI

9.73% CL

Reactor

Для данных 1.49 х 10^{21} (ν) + 1.64 х 10^{21} ($\overline{\nu}$) POT получена оценка $\delta_{CP}(1\sigma)$:

- для нормальной иерархии масс (NO) δ_{СР}= -1.89^{+0.70}_{-0.58} (~максимальное СРV)
- для обратной иерархии масс (IO) $\delta_{CP} = -1.38^{+0.48}_{-0.54}$

 $\sin^2(\theta_{23})$ 0.5 доверительные интервалы для δ_с. 0.45 **NO:** $[-3.41; -0.03] \rightarrow \{\delta_{CP} = 0\}$ исключено 0.4 **IO:** [-2.54; -0.32] $\rightarrow \{\delta_{CP} = 0 \text{ и } \delta_{CP} = \pm \pi\}$ исключены $\rightarrow IO$ [NO = normal ordering $(m_3 > m_2)$ IO= inverted ordering $(m_3 < m_2)$]

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Модернизация ближнего детектора

2021 (план):

 π^{0} -детектор (POD) будет заменён

- активной 3D нейтринной мишенью из

сцинтилляционных кубиков (Super-FGD);

- и двумя горизонтальными TPC (HTPC)

Цели: а) уменьшение систематики до 3-4%;

b) 4π-аксептанс для мюонов; c) снижение порога регистрации протонов (>300 МэВ/с); d) детектирование нейтронов

Scintillator target (Super-FGD):

11.03.2020

~2 million cubes

1 cm³ cubes 3 fibers per cube М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

марта 2020

Эксперимент Гипер-Камиоканде (НК) 🤳

2027 (план): старт **НК/Т2НК**

- Усиленная мощность пучка J-PARC MR: ~1.3 МВт
 - 2.7×10²² РОТ (за 10 лет)
- Модернизированный ближний детектор ND280
- Новый промежуточный детектор (IWCD)* @~1 км
- Новый дальний детектор
 - с такой же пролетной базой, 295 км,
 - под тем же углом (off-axis), 2.5°
 - 71 м (высота), 68 м (диаметр)
 - общий объём 260 тыс. тонн
 - fiducial volume **187 тыс. тонн** (~8 x SK)
 - 40% photocoverage
- Улучшенная чувствительность (3-5σ of CPV discovery)
- Богатая (астро)физическая программа
 - * IWCD = Intermediate Water Cherenkov Detector

- За 10 лет сеансов (23.01.2010 12.02.2020) накоплено 3.64 × 10²¹ РОТ (v: 1.99 × 10²¹; $\overline{\nu}$: 1.65 × 10²¹ РОТ); достигнута мощность 515 кВт
- Результаты для дефицита ν_µ/ν_µ согласуются с другими данными: sin²(θ₂₃) = 0.53; |Δm²₃₂| = (2.45 ± 0.07) x 10⁻³ eV²/c⁴
- Результаты для СР нарушающей фазы указывают на значение, близкое к максимальному δ_{CP}= -1.89^{+0.70}_{-0.58} (для нормальной иерархии масс)
- Значения СР сохраняющей фазы {δ_{CP} = 0 и δ_{CP} = ±π} исключены на уровне выше 2σ для обоих вариантов иерархии масс, причём, для нормальной иерархии δ_{CP} = 0 исключено на уровне 3σ (99.73% с.l.)
- В 2021 г. планируется модернизация ближнего детектора ND280

T2K Collaboration

 \star

*					
Canada TRIUMF U. B. Columbia U. Regina U. Toronto U. Victoria	Italy ~500 memb INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma Japan ICRR Kamioka ICRR RCCN	Ders, 64 Institutes, Poland IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T.	12 countries Switzerland ETH Zurich U. Bern U. Geneva United Kingdom	USA Boston U. Colorado S. U. Duke U. Louisiana State U. Michigan S.U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington	
U. Winnipeg York U. France CEA Saclay LLR E. Poly. LPNHE Paris	Kavli IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U.	Wrocław U. Russia INR Spain	Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. Royal Holloway U.L. STFC/Daresbury STFC/RAL		
Germany Aachen U.	Tokyo Institute Tech Tokyo Metropolitan U. U. Tokyo Tokyo U of Science Yokohama National U.	IFAE, Barcelona IFIC, Valencia U. Autonoma Madrid	U. Sheffield U. Warwick	IFIRSE IOP, VAST	

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Дополнительные слайды

Экспериментальные данные Т2К

Yearly Delivered POT - up to T2K Run 10

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Нейтринный поток (без осцилляций)

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Дефицит мюонных (анти)нейтрино

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu_{\mu}}$ $\nu_{\mu} \rightarrow \nu_{\mu}$ Events in bin Events in bin 24 50 T2K Run 1-9d Preliminary T2K Run 1-9d Preliminary 22 F 20 40 18 243 события 140 событий Данные: Данные: 16 MC (osc): 272.3 события MC (osc): 139.5 событий 30 14 12 10 20 10 'n 9 10 2 3 5 6 8 9 10 Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV)

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

Избыток электронных (анти)нейтрино

<u>1.49x10²¹</u>(v) + **1.64x10²¹**(v) POT

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

марта 2020

Τ2

Систематические ошибки

(после ограничения ближним детектором ND280)

	1-Ring	g μ-like	1-Ring e-like			
Error source	ν -mode	$\overline{\nu}$ -mode	ν -mode	$\overline{\nu}$ -mode	$ u$ -mode CC1 π	ν -/ $\overline{\nu}$ -modes
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
SK FSI + SI + PN	2.21	1.98	3.00	2.31	11.43	1.57
Flux+Cross sect. constrained	3.27	2.94	3.24	3.10	4.09	2.67
E _b	2.38	1.72	7.13	3.66	2.95	3.62
$\sigma(\nu_{\rm e})/\sigma(\overline{\nu}_{\rm e})$	0.00	0.00	2.63	1.46	2.61	3.03
ΝC1γ	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc	0.03	0.03	2.69	2.49	2.63	0.77
Total Systematic error	5.12	4.45	8.81	7.13	18.38	5.96

FSI = Final State Interaction

SI = Secondary interactions

11.03.2020

PN = Photo-nuclear interactions Eb = binding energy; NC = Neutral Current

М. Хабибуллин, Эксперимент Т2К, Новосибирск, 10-12

марта 2020

Важно для δ_{CP}

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2s_{13}^{2}\right)\right) \qquad \begin{array}{c} \text{Leading term including}\\ \text{matter effect} \end{array}$$

$$+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \qquad \begin{array}{c} \text{CP conserving} \\ -8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}(\sin\delta)\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \qquad \begin{array}{c} \text{CP violating} \\ +4s_{12}^{2}c_{13}^{2}\left(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right)\sin^{2}\Delta_{21} \qquad \begin{array}{c} \text{Solar} \\ -8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E}\cos\Delta_{32}\sin\Delta_{31} & \text{Matter effect (small)} \\ \end{array}$$

$$= 2\sqrt{2}G_{\mu}n_{e}E = 7.56 \times 10^{-5} \text{eV}^{2}\frac{\rho}{\text{gcm}^{-3}}\frac{E}{\text{GeV}} \\ \text{replace d by -d and a by -a for } P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) \end{array}$$

E

Jarlskog invariant:

$$\begin{split} \mathsf{J}_{\mathsf{CP}, \, \mathit{lepton}} &= (1/8) \cos\theta_{13} \sin(2\theta_{12}) \sin(2\theta_{23}) \sin(2\theta_{13}) \sin(\delta_{\mathsf{CP}}) \\ &\simeq \mathbf{3.3} \times \mathbf{10^{-2} \sin(\delta_{\mathsf{CP}})} \end{split}$$

 $J_{CP, quark} = 3.3 \times 10^{-5}.$

Функция правдоподобия

$$-2\ln\lambda(\overline{\delta_{CP}};\mathbf{a}) = 2\sum_{i=1}^{N} \left[n_i^{obs} \ln\left(\frac{n_i^{obs}}{n_i^{exp}}\right) + n_i^{exp} - n_i^{obs} \right] + (\mathbf{a} - \mathbf{a_0})^T \mathbf{C}^{-1} (\mathbf{a} - \mathbf{a_0})$$

where $\overline{\delta_{CP}}$ is the estimated value of δ_{CP} , a is the vector of systematic parameter values (including the remaining oscillation parameters), $\mathbf{a_0}$ is the vector of default values of the systematic parameters, C is the systematic parameter covariance matrix, N is the number of reconstructed energy and lepton angle bins, n_i^{obs} is the number of events observed in bin i and $n_i^{exp} = n_i^{exp}(\overline{\delta_{CP}}; \mathbf{a})$ is the corresponding expected number of events. Systematic parameters are marginalized according to their prior constraints from the fit to ND280 data.