Сессия-конференция СЯФ ОФН РАН

Когерентное фоторождение нейтральных псевдоскалярных мезонов $\pi^0\pi^0$ и $\pi^0\eta$ на лёгких ядрах

ФГУП «РФЯЦ-ВНИИТФ

им. академ. Е.И. Забабахина»

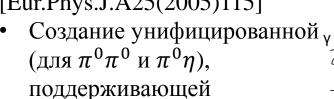
Автор: к.ф.-м.н. Егоров М.В.

Новосибирск 2020

Исследование спектра адронов

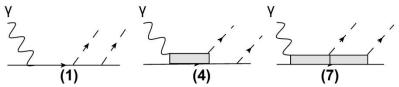
- Проблема «недостающих резонансов». Предсказания $A_{J}C/KXJ$ теории и кварковых моделей положения и количества N, Δ резонансов и соответствие им в данных по упругому πN рассеянию.
- Связь N, Δ резонансов с многомезонными модами распада.
- Отсутствие дублета по чётности (Δ(1920)3/2⁺,Δ(1940)3/2⁻)

Ввиду особенностей электромагнитного взаимодействия, именно электромагнитное возбуждение является наиболее подходящим способом Экспериментального изучения адронных резонансов. (Коллаборации CBELSA/TAPS, A2-TAPS MAMI, CLAS и др.)

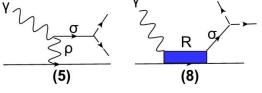

- Чистота интерпретации эксперимента
- Малая константа связи → методы теории возмущений
- Проблема взаимодействия частиц в конечном состоянии.

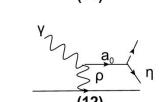
Когерентное фоторождение нейтральных псевдоскалярных мезонов $\pi^0\pi^0$ и $\pi^0\eta$ на лёгких ядрах

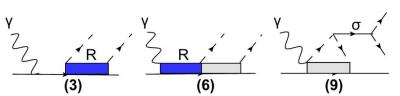
$$\gamma(\vec{k},\epsilon_{\lambda}) + A(\vec{p}_i,E_A) \to \pi^0(\vec{q}_{\pi},E_{\pi}) + s(\vec{q}_s,E_s) + A(\vec{p}_f,E_A'), \qquad s \in (\pi^0,\eta)$$

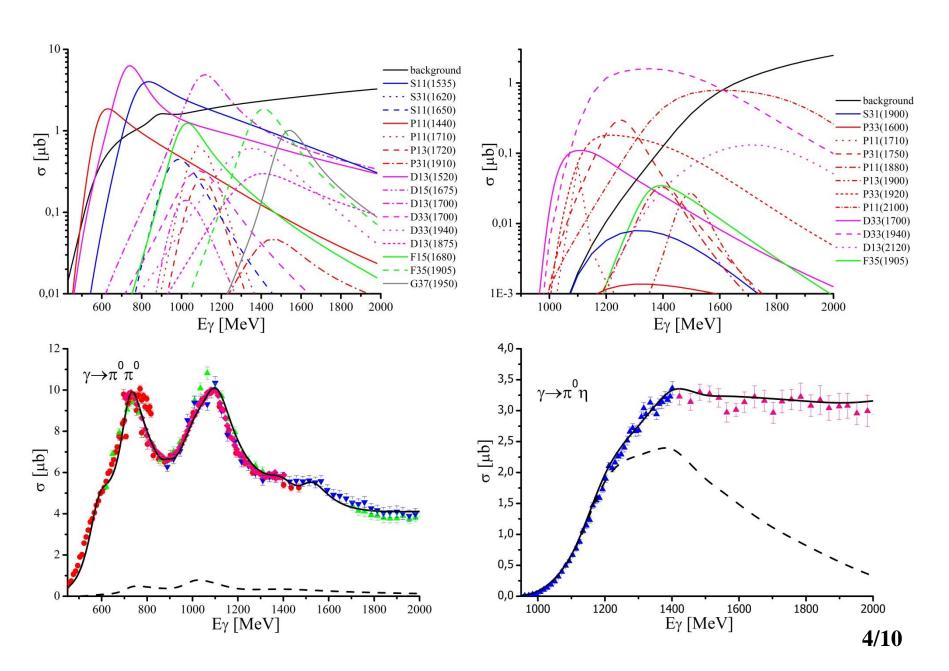

Простота изобарных моделей


[Eur.Phys.J.A25(2005)115]

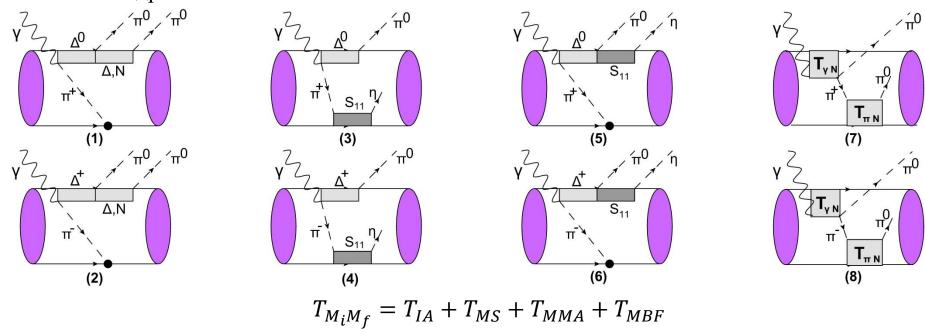



унитарность модели


Импульсное приближение и эффекты взаимодействия в конечном состоянии.



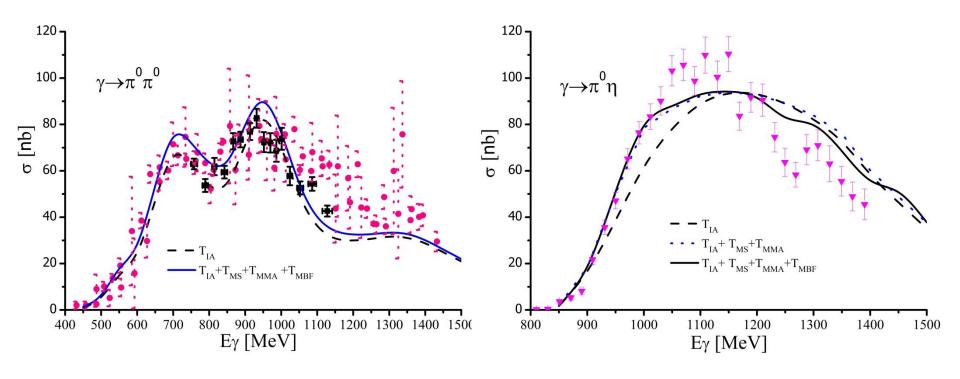
Массы и ширины резонансов из Particle Data Group (2019):


 $N(1440)^{\frac{1}{2}^+}$, $N(1520)^{\frac{3}{2}^-}$, $N(1535)^{\frac{1}{2}^-}$, $N(1650)^{\frac{1}{2}^-}$, $N(1675)^{\frac{5}{2}^-}$, $N(1680)^{\frac{5}{2}^+}$, $N(1700)^{\frac{3}{2}^-}$, $N(1710)^{\frac{1}{2}^+}$, $N(1720)\frac{3}{2}^{+}$, $N(1875)\frac{3}{2}^{-}$, $N(1880)\frac{1}{2}^{+}$, $N(1900)\frac{3}{2}^{+}$, $N(2100)\frac{1}{2}^{+}$, $N(2120)\frac{3}{2}^{-}$, $\Delta(1232)\frac{3}{2}^{+}, \Delta(1600)\frac{3}{2}^{+}, \Delta(1620)\frac{1}{2}^{-}, \Delta(1700)\frac{3}{2}^{-}, \Delta(1750)\frac{1}{2}^{+}, \Delta(1900)\frac{1}{2}^{-}, \Delta(1905)\frac{5}{2}^{+}, \Delta(1910)\frac{1}{2}^{+}, \Delta(19$ $\Delta(1920)\frac{3}{2}^+, \Delta(1940)\frac{3}{2}^-, \Delta(1950)\frac{7}{2}^-.$ 3/10

Элементарные спектры и сечения

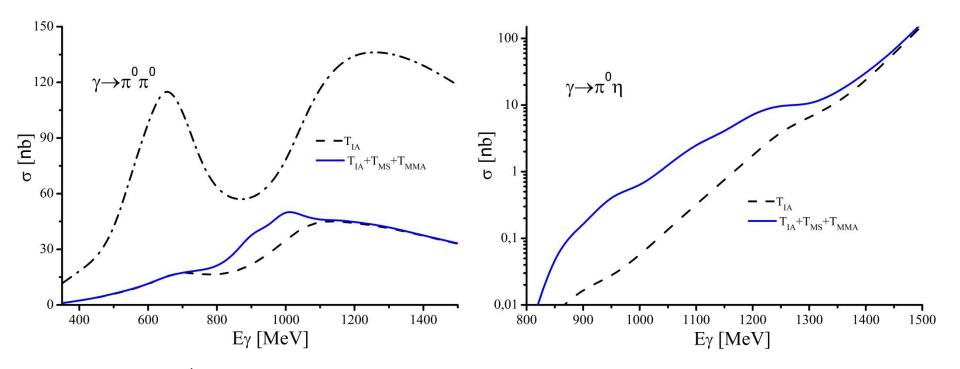
Взаимодействие π^0 и η с ядром в конечном состоянии

- Отсутствие сильных Борновских вкладов
- Сильная зависимость полного сечения от типа ядра-мишени

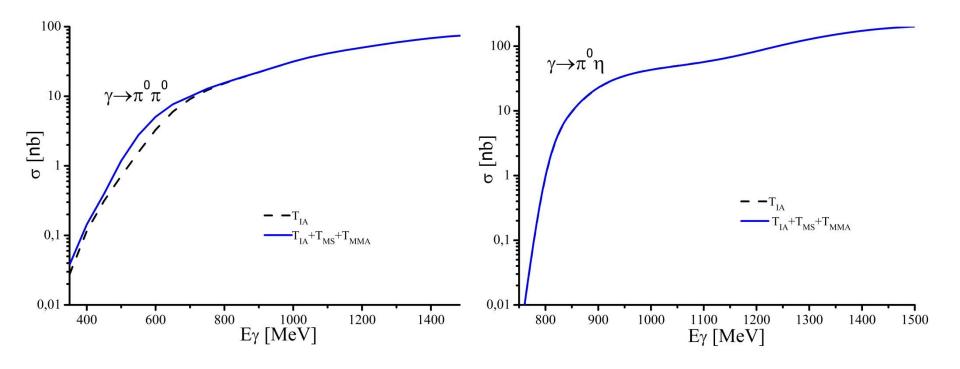


 T_{IA} —импульсное приближение

 T_{MS} — рассеяние $\pi N o \pi N$, $\pi N o \eta N$


 T_{MMA} —фоторождение $\pi^{+,-}\pi^0\pi^0$ и $\pi^{+,-}\pi^0\eta$ с последующим поглощением $\pi^{+,-}$ T_{MBF} —многочастичное взаимодействие мезонов с ядром в конечном состоянии

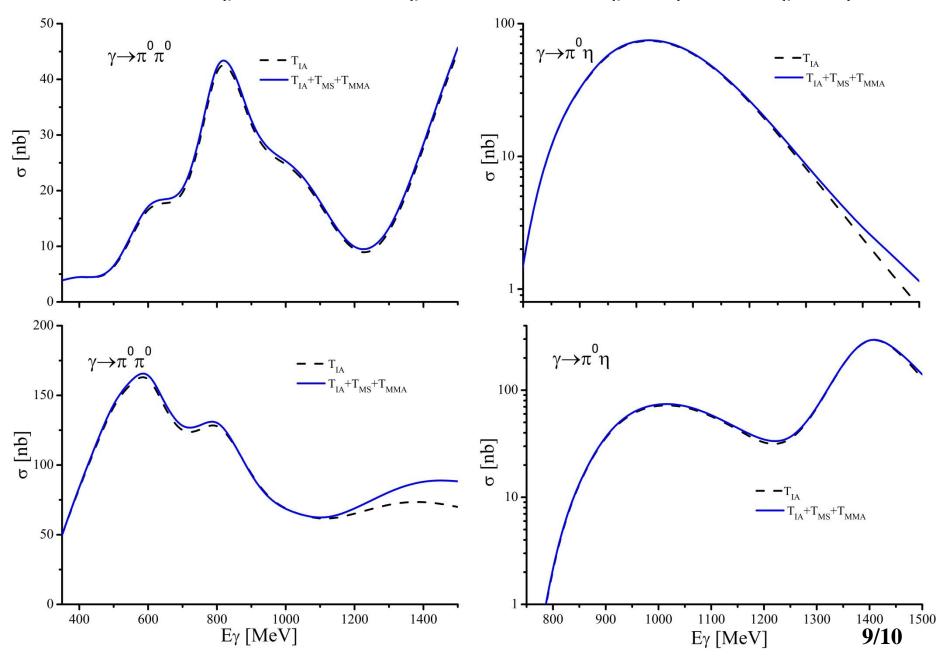
Реакции $d(\gamma, \pi^0\pi^0)d$ и $d(\gamma, \pi^0\eta)d$


- Обмен $\pi^{+,-}$ приводит к росту сечения
- Фильтрующее действие дейтрона отсеивает механизмы 7-8 (пионная оптика не применима)
- Волновая функция дейтрона [Mackleidt, Phys.Rep.149(1987)], позволяет описывать δ_L для упругого NN рассеяния до 500 МэВ
- Вклад πNN ничтожен, ηNN велик

Реакции 3 He $(\gamma, \pi^{0}\pi^{0})$ 3 He и 3 He $(\gamma, \pi^{0}\eta)$ 3 He

- Обмен $\pi^{+,-}$ приводит к росту сечения только в некоторых областях
- Удачная параметризация 3N волновой функции гелия-3 [Baru, Eur.Phys.J.A16(2003)] позволяет описать данные по фоторождению π^+ вплоть до переданных импульсов $Q^2 = 8 \text{ фм}^{-2} \approx 550 \text{ M} \text{эB}$.
- Точный учёт спектроскопической связи в ядерном матричном элементе важен. Вклады πNN и ηNN не рассчитывались

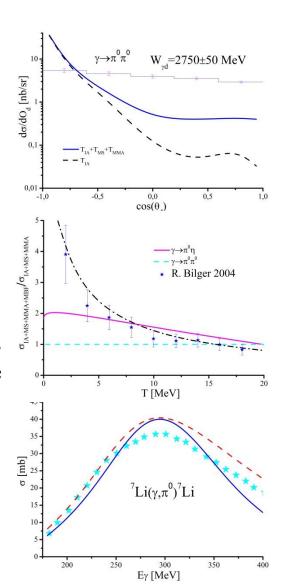
Реакции ${}^{4}\text{He}(\gamma,\pi^{0}\pi^{0}){}^{4}\text{He}$ и ${}^{4}\text{He}(\gamma,\pi^{0}\eta){}^{4}\text{He}$



- Обмен $\pi^{+,-}$ приводит к росту сечения только в канале $\pi^0\pi^0$
- Волновая функция ⁴Не получена на основе DWBA [Sherif,PRC27(1983)]

$$\psi(r) = \frac{\exp(\alpha r)}{r} \sum_{j=1}^{\infty} a_j \exp(-\beta_j r)$$

• Не чувствительна к отдельным спин-угловым состояниям активного нуклона Вклады $\pi-NN$ и $\eta-NN$ не рассчитывались


Реакции 6 Li $(\gamma,\pi^0\pi^0)$ 6 Li, 7 Li $(\gamma,\pi^0\pi^0)$ 7 Li и 6 Li $(\gamma,\pi^0\eta)$ 6 Li, 7 Li $(\gamma,\pi^0\eta)$ 7 Li

Выводы

- Модель $p(\gamma, \pi^0 \pi^0) p, p(\gamma, \pi^0 \eta) p$ достаточно хорошо описывает полные сечения.
- Фоторождение $\pi^{+,-}\pi^0\pi^0$ и $\pi^{+,-}\pi^0\eta$ с последующим поглощением $\pi^{+,-}$ существенно увеличивает выход d в области $\cos(\theta_d) > -0.5$ и полное сечение.
- Вклад ηNN взаимодействия оказывается важным, но вклад в полное сечение мал. В области $T_{\eta} < 5$ МэВ существенную роль играет зависимость $\lambda_{ij}(W)$.
- При переходе к ядрам с A>2 ключевое значение в описании сечений когерентных процессов $(\gamma, \pi^0 \pi^0)$ и $(\gamma, \pi^0 \eta)$ приобретает волновая функция ядра мишени.
- Для ядер с А>4, по-видимому, уже оболочечная модель с промежуточной связью качественно передаёт поведение сечения фоторождения пионов с ростом энергий.
- Полное сечение ${}^{6}\text{Li}(\gamma, \pi^{0}\pi^{0}){}^{6}\text{Li}$ того же порядка, что и $d(\gamma, \pi^{0}\pi^{0})d$, в то же время поведение ${}^{4}\text{He}(\gamma, \pi^{0}\pi^{0}){}^{4}\text{He}$, а также ${}^{4}\text{He}(\gamma, \pi^{0}\eta){}^{4}\text{He}$ и ${}^{6}\text{Li}(\gamma, \pi^{0}\eta){}^{6}\text{Li}$ отличается заметно \rightarrow влияние ядерной волновой функции

Первое систематическое изучение $(\gamma, \pi^0 \pi^0)$ и $(\gamma, \pi^0 \eta)$ на лёгких ядрах в единой микроскопической манере.

10/10