

Transferring knowledge gained for pulsed extraction at ELISE to ITER-relevant CW extraction

D. Wünderlich for the IPP NNBI team

Size scaling towards the ion source for ITER NBI.

Size scaling towards the ion source for ITER NBI.

Challenge: generation of a powerful negative ion beam...

*: assuming 30 % stripping losses as predicted for ITER

Hydrogen: ITER targets can be achieved.

Series of stable and reproducible 1200 s pulses (pulsed extraction).

Typical timing of long pulses, pulsed extraction

Example: two extraction blips within one plasma pulse

- Plasma ignited at increased pressure ("gas puff"), reduced I_{PG} and P_{RF}.
- Nominal source parameters reached after ≈5 s.
- Extraction is possible for ≤ 10 s each ≈ 150 s.
- Pulses done up to lengths of 3600 s.

Averaged results for each beam blip \Rightarrow database.

Caesium dynamics during long pulses, pulsed extraction

Co-extracted e⁻ during best long pulses in D₂ at p_{fill} =0.3 Pa up to now (~67 % of current density target):

- •... show for high P_{RF} a pronounced vertical asymmetry.
- ... increase between one blip and the next \leftrightarrow decrease during each blip.

Caesium dynamics plasma vs. beam

General difference Caesium re-distribution plasma – beam

Physical reason

• Impact of back streaming positive ions on Cs reservoirs at source back plate.

Reservoirs re-filled during the plasma-only phases.

 General agreement with results of Monte Carlo code CsFlow3D.

Caesium dynamics plasma vs. beam

General difference Caesium re-distribution plasma – beam

Physical reason

• Impact of back streaming positive ions on Cs reservoirs at source back plate.

Reservoirs re-filled during the plasma-only phases.

 General agreement with results of Monte Carlo code CsFlow3D.

Caesium dynamics plasma vs. beam

General difference Caesium re-distribution plasma – beam

Physical reason

 Impact of back streaming positive ions on Cs reservoirs at source back plate.

Reservoirs re-filled during the plasma-only phases.

 General agreement with results of Monte Carlo code CsFlow3D.

Exploit this effect

- Pure plasma pulses for conditioning.
- Longer break between plasma pulses (increase Cs fluence).
- Switch off B field between blips during long pulses.

Operating ELISE with short extraction blips

ITER values possible in hydrogen \Rightarrow most pressing issue now is deuterium:

- Much more co-extracted e⁻.
- Stronger temporal increase of co-extracted e⁻.
- Co-extracted e⁻ vertically more asymmetric.

Best results up to now in D_2 :

191 A/m² (67 % of target) over 2700 s and 0.3 Pa

224 A/m² (78 % of target) over 10 s and 0.3 Pa

 277 A/m^2 (97 % of target) over 10 s for 0.6 Pa

 \Rightarrow again: relevance of symmetry of co-extracted e⁻!

Step from pulsed to CW extraction

Completely different timing

- Database now based on virtual extraction blips.
- These are defined by the control system and distributed to the different diagnostics.

Upgrade to CW results in...

- Changed cooling requirements (mainly: calorimeter).
- Data acquisition and processing needs to be modified.

Step from pulsed to CW extraction

Completely different timing

- Database now based on virtual extraction blips.
- These are defined by the control system and distributed to the different diagnostics.

Upgrade to CW results in...

- Changed cooling requirements (mainly: calorimeter).
- Data acquisition and processing needs to be modified.
- Huge impact on Cs re-distribution (CsFlow3D).

Alternative Cs distribution procedures may be needed

Needed hardware upgrades

- New CW HV power supply.
- CW beam calorimeter.

Step from pulsed to CW extraction

Completely different timing

- Database now based on virtual extraction blips.
- These are defined by the control system and distributed to the different diagnostics.

Upgrade to CW results in...

- Changed cooling requirements (mainly: calorimeter).
- Data acquisition and processing needs to be modified.
- Huge impact on Cs re-distribution (CsFlow3D).

Alternative Cs distribution procedures may be needed

Needed hardware upgrades

- New CW HV power supply.
- CW beam calorimeter.

Upgrade to CW operation (I)

New CW HV power supply (OCEM)

- Technical specs comparable to old PS.
- One 12 kV module and one 50 kV module, each consisting of several power modules in series.
- No tube-based HV modulators needed.
- Delivery delayed due to Corona by several months.

12 kV PS module

12 kV PS transformer

Upgrade to CW operation (II)

CW beam calorimeter (IPP design)

- Active cooling needed (max. power load: 4.5 MW/m², max. power: 1.8 MW).
- Modular design: 3 horizontal plates, water cooled.
- Beam profile diagnosed by IR camera:
 - Calorimeter back side blackened.
 - Resolution: 20×40 mm.

Upgrade to CW operation (II)

CW beam calorimeter (IPP design)

- Active cooling needed (max. power load: 4.5 MW/m², max. power: 1.8 MW).
- Modular design: 3 horizontal plates, water cooled.
- Beam profile diagnosed by IR camera:
 - Calorimeter back side blackened.
 - Resolution: 20 × 40 mm.
- Reduced version (one plate) tested at BATMAN Upgrade.
 - MATLAB routine for automatic evaluation

New CW calorimeter design successfully tested at BATMAN Upgrade.

Encouraging results obtained in ELISE in hydrogen for pulsed extraction.

Deuterium: vertical asymmetry of co-extracted e- is the main issue. Can be solved for p_{fill}=0.6 Pa (only)

- Some of the developed caesium conditioning techniques exploit the existence of extraction blips.
- Long pulses: caesium reservoirs at source backplate replenished in between extraction blips.

- Challenge: transfer existing conditioning techniques to CW operation.
- Possibly different ways for evaporating and re-distribution caesium are needed for the CW mode.

Upgrade of ELISE to CW extraction; first results expected end of 2020