Vacuum Pressure Considerations on the Performance and Lifetime of Negative Ion Sources
Scott R. Lawrie and Olli A. Tarvainen
ISIS Pulsed Spallation Neutron and Muon Facility
STFC Rutherford Appleton Laboratory, Oxfordshire UK

Executive Summary
- Negative ions are very fragile and easily stripped by poor vacuum pressure. Effort should be made to improve pumping efficiency.
- Depending on the vacuum setup, up to 20% of beam current may be lost purely due to vacuum pressure, all other things being equal.
- Back-streaming positive ions are produced from residual gas ionisation. Experiments show clear erosion pattern from positive ions.
- Where every milliamp counts in negative ion sources, as well as lifetime and reliability, vacuum quality should be prioritised.

- Standard ISIS operational setup includes a ‘cold box’ caesium trap.
- Convoluted pumping route through cold box leads to poor vacuum.
- Up to 40% beam loss on dipole magnet poles inside cold box.
- Additional ancillary hardware required to support cold box & magnet.
- Different setup tested with no cold box: much better beam & vacuum.

- Time evolution of pressure in cold box and vacuum vessel
- 200 µs H₂ gas pulse fills cold box over much longer timescale
- H₂ flow chosen so average pressure matches that measured
- Beam extracted between 500-2000 µs sees ~5x10⁻⁴ mbar
- Pressure without cold box in ‘top-loader’ setup is ~50x lower

- Microscope images of Penning source molybdenum anode
- Backstreaming positive ions accelerated into ion source
- Clear groove cut when extractor on; no groove when off
- Erosion clearly depends on stripping losses and pressure

Recommendations:
- Give higher consideration to pumping during source design
- Simulate vacuum pressure profile for different configurations
- Aim for < 5x10⁻⁵ mbar as soon as possible after extraction
- Consider shifting gas pulse timing to reduce beam stripping
- Calibrate beam current results to account for stripping

- Pressure profile measured along beam flightpath at time = 800 µs
- H⁻ survival calculated using pressure and stripping cross section
- 2x source large losses at extraction due to larger emission aperture
- Cold box large losses due to long drift through high pressure region