

110 mA Operation of J-PARC Cesiated RF-Driven H⁻ Ion Source

<u>Akira UENO</u>, Kiyonori OHKOSHI, Kiyoshi IKEGAMI, AkiraTAKAGI, Katsuhiro SHINTO, and Hidetomo OGURI J-PARC Center

CONTENTS

- Experimental Setup & Methods (J-PARC IS Test-stand)
- Relationships between I_{H} & required W_{H} and V_{E} & $\epsilon_{95\% nrms \times/y}$ for $(I_{H}$ -, W_{H} -) = (72mA, 52.5keV), (80mA, 56keV), (110mA, 65keV)
- 8 hours operation
 - with $(I_{H^-}, W_{H^-}, V_E, duty factor) = (110mA, 65keV, 12.7kV, 4.5%)$
- Measured waveforms of $V_E,\,V_T,\,V_{2MHzF}$ & V_{2MHzR} and $I_{H}\text{-}$ & I_{EE} of one beam pulse
- Measured particle distributions in horizontal & vertical phase-planes for $(I_{H^-}, W_{H^-}, V_E, duty factor) = (110mA, 65keV, 12.7kV, 4.5%)$
- CONCLUDIONS

J-PARC RF-Driven H⁻ Ion Source Test-Stand

High I_{H} - & Brightness & RF power efficiency by Thick PE(16mm-45°:1.5 I_{H} -), slight H_2Os Feeding($0.5\varepsilon_{nrsmx/y}$), Low T_{PE} ~70°C($0.75\varepsilon_{nrmsx/y}$), CW-30MHzRF igniter($1.2I_{H}$ -:17SCCMfor ϕ_{PE} =9mm): 94.3% RFQ accl. effi. for 72mA ₃

Detailed dimensions of beam extraction region & 110 mA operation parameters

 ϕ_{PE} =9mm, ϕ_{EE} =7.1mm, ϕ_{GE} =13.2mm, V_T=52.5~65.5kV, W_H-=52.5~65 keV, G_E=3.2mm, V_E=9.2~13.6kV, G_A=7mm, V_A=42.4~52.4kV

IS & test-stand paramametes for I _H - = 110 mA operation	Value
H ₂ gas flow rate	17 SCCM
CW 30 MHz RF igniter power	50 W
2 MHz RF duty factor ~ Beam duty factor *Limitted by radiation safety permission of averaged I _H - = 5 mA	4.5 % (1 ms × 45 Hz) *110 mA × 4.5 % = 4.95 mA
2 MHz RF power (P _{2MHz}) *tilt up	40 ~ 41.6 kW
RF power efficiency (I _H - / P _{2MHz})	2.64 mA/kW
H⁻ ion density at PE (_{∳PE} =9mm)	1729 A/m ²
Plasma electrode temperature (T_{PE})	~70° C
Stationary state Cs injection rate *Mainly attached on low temp. part	<mark>35.8 μg/hour</mark> *Not ejected
H [–] ion beam energy (W _H -) = (V _E + V _A)	<mark>65 keV</mark> =(12.7 + 52.3) kV
1st section vacuum pump & vacuum pressure	1500 L/s TMP & 1.5 × 10 ⁻² Pa
2nd section vacuum pump	500 L/s TMP
Solenoid magnet current	350 A(49000 AT)

110mA H⁻ IS 2020/9/9 @NIB2020

4

 $V_E vs \epsilon_{95\% nrmsx/y} \& W_H - vs I_H - / V_E$

Measured relationships between V_E and $\varepsilon_{95\%}$ mmsx/y for conditions of $(W_H^-, I_H^-) = (52.5 \text{ keV}, 72 \text{ mA})$, (56 keV, 80 mA) and (65 keV, 110 mA), plotted with blue open or closed squares, green open or closed circles and red open or closed diamonds, respectively.

Measured relationships between W_H - & I_H - without any emittance blowups, W_H - & optimum V_E plotted with red closed circles and blue closed circles, respectively. <u>Fitted</u> I_H - & V_E equations are shown with red & blue lines, respectively. Square (not 3/2 power) dependence of I_H - on required W_H - is essential for next IS & RFQ design.

8 hours 110 mA operation & waveforms of one beam pulse

Trend graph of I_{H^-} , I_{EE} , P_{2MHz} and Cs-valve close/open during 8 hours operation of wellconditioned IS after 88 hours shutdown, in which I_{H^-} , was feedbacked to 110 ±1 mA by P_{2MHz} , for W_{H^-} and V_E of 65 keV and 12.7 kV, respectively. In station. state, Cs inject. rate = 35.8 µg/hour.

110mA H⁻ IS 2020/9/9 @NIB2020

and I_{H} - and I_{EE} (d) of one beam pulse. *Flat I_{H} by tilting up P_{2MHz} by 4% to comp. $V_{E} \& V_{T}$ droops.

CONCLUDIONS

- Square (not 3/2 power) dependence of I_{H^-} on W_{H^-} required to avoide emittance blowup was measured : $I_{H^-}(W_{H^-}) = 71.2 \times (W_{H^-} / 52.5)^{2.03} (>3/2)$.
- 8 hours operation with $(I_{H^-}, W_{H^-}, V_E, duty factor) = (110mA, 65keV, 12.7kV, 4.5%)$ was stable without high voltage sparking. In stationary state, I_{H^-} was feedbacked to 110 ± 1 mA by P_{2MHz} & Cs injection rate was 35.8 µg/hour.
- Flat I_{H^-} pulse was produced by 4 % titing up P_{2MHz} during pulse.
- $\epsilon_{95\%nrmsx/y}$ was measured as $0.247/0.259\pi$ mm·mrad for $(I_{H^-}, W_{H^-}, V_E, duty factor) = (110mA, 65keV, 12.7kV, 4.5\%)$. 102.5mA of beam is inside of PARMTEQ injection beam emittances with smaller $\epsilon_{nrmsx/y}$.
- 132mA(=110mA×50kW/41.6kW:: I_H-∞P_{2MHz}) is possible with appropriately designed high voltage power supply & 2 MHz matching circuit for V_T=72 kV {::71.2×(71.2keV/52.5keV)^{2.03}=132mA}.

ACKNOWLEDGMENT

The authors wish to express their sincere thanks to Dr. Martin P. Stockli and SNS ion source group members for their support to purchase internal-RF-antennas and their information on the SNS RF-driven H⁻ ion source.

"Thank you for your attention"

110mA H⁻ IS 2020/9/9 @NIB2020

Overview of the J-PARC (Japan Proton Accelerator Research Complex)

- J-PARC comprises a high-intensity proton accelerator and the experimental facilities that utilize the proton beam.
- The J-PARC accelerator consists of a linear accelerator (Linac), a Rapid Cycling Synchrotron (RCS) and a Main synchrotron Ring (MR).

Beam supply to MLF with the beam

power of **600 kW** (in 2020)

Beam energy :3 GeV

Injection into MR

Delivery to MLF

- Beam power
- 500 kW (in 2020) to NU
- 50 kW (in 2020) to HD

- The proton beams accelerated at the RCS are delivered to the Materials and Life Science Experimental Facility (MLF) and injected into the MR.
- After the proton beams accelerated at the MR, they are delivered to the Neutron Production Facility (NU) or to the Hadron beam Facility (HD).

- Beam energy : 400 MeV
- Beam current:
- **50 mA** for user operation 60 mA for beam study (peak current at Linac exit)
- Pulse length : < 0.5 ms
- Repetition: 25 Hz

J-PARC Cesiated RF H⁻ ion source

			Discharge type	Internal antenna RF discharge
Collimating lens to for monitoring the line of Rod filter magnets	ns to a spectroscope ne spectrum of Cs (852 nm) H ₂ gas inlet PE cooling/heating air-flow pipes	Repetition rate	25 Hz	
		RF frequency	30 MHz (cw, ~ 50 W) 2 MHz (0.8 ms pulsed, ~ 35 kW)	
		H_2 gas flow rate	21 sccm	
		Cs consumption	0.28 g in 1,567 hrs (in 2019)	
		Beam energy	50 keV	
			Extracted H ⁻ beam current	60 mA (for user operation) 72 mA (for accelerator beam study)
Plasma electrode (PE) Axial magnetic field		Cs pneumatic Valve (240°C) Cs reservoir (180 ~ 200°C	 The inner volume of the plasma chamber is 100 mm in diameter and 120 mm in length. H₂ plasmas are confined by 18-pole cusp magnetic field. The aperture of the PE is 9 mm in diameter. 	
correction (AMFC) coil				10

Specifications

110mA H- IS

2020/9/9 @NIB2020

110mA H⁻ IS 2020/9/9 @NIB2020

Progress of J-PARC RF H⁻ ion source

<u>Continuous operation time prolonged :</u> ~1.5 months →2.5 months (Run#75) →3 months (2017 Autumn~) → **3.5 months (2020 Jan.- Apr.)**